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Summary of the Research Results

The following goals have been accomplished in the course of this research:

. We have analyzed nonlinear energy transfer between scales of motion in homogeneous

isotropic and uniform shear turbulence using results of direct numerical simulations.
The main conclusion drawn from these analyses is that the transfer is local in the
spectral space i.e. occurs between two similar small scales, but results from interactions
of these scales with much larger and energetic scales from the energy containing range
(local energy transfer through nonlocal triad interactions).

The results of this investigation were used to develop a new theory of spectral energy
dynamics. The theory properly accounts for properties of interscale energy transfer
observed in the simulations, predicts the form of the energy spectrum in the dissipation
range in agreement with experiments and simulations, predicts correctly the form of
the energy spectrum in the inertial range, and provides a plausible physical mechanism
responsible for the observed transfer process.

. We have devised a physical space representation of the spectral energy transfer among

scales with predefined sizes and found that the interscale energy transfer is spatially
intermittent and local in the physical space.

. The physical space representation of the spectral energy transfer was used in an analysis

of subgrid-scale nonlinear interactions. The subgrid-scale transfer was found to be
composed of a forward and an inverse transfer components, both being significant in
dynamics of resolved scales. Energy exchanges between the resolved and unresolved
scales from the vicinity of the cutoff wave number dominate the subgrid-scale processes
and the energetics of the resolved scales are unaffected by the modes with wave numbers
greater than twice the cutoff wave number. The dominance of nonlinear interactions
among the largest scales in the subgrid-scale energy transfer process suggests that the
resolved nonlinear term may serve as a basis of a new approach to the subgrid-scale
modeling.

. The physical space representation of the subgrid-scale transfer was used in assessing

the dynamical importance of large scales of motion (coherent structures) in isotropic
turbulence. The spatial structure of the exact subgrid-scale transfer was qualitatively
compared with the spatial structure of a number of physical quantities which are con-
sidered to govern the dynamics of the large scales of turbulence. It was found that
all quantities determined by the first derivatives of the velocity field correlate poorly
with the transfer which is largest at the peripheries of regions characterized by large
values of these quantities. The spatial structure of the transfer correlates much better
with the large scale energy and the Smagorinsky’s subgrid-scale energy transfer which
is determined by the second derivatives of the velocity field. None of the considered
quantities was capable of predicting sign of the subgrid-scale transfer.
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The interscale energy transfer analysis in both spectral and physical representation iras
been performed using results of direct numerical simulations of the Kida flow performed
by Dr. Pelz at Rutgers University. The results of this analysis will serve to supplement
an ongoing investigation at Rutgers of the process of generation of small scales in such
a flow.
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Interscale Energy Transfer in Numerically
Simulated Homogeneous Turbulence

By J. A. Domaradzki?!, R. S. Rogallo?, and A. A. Wray?

Energy transfer is investigated for flows obtained by direct numerical simulations
of low Reynolds number homogeneous-shear and isotropic turbulence and by large-
eddy simulations of high Reynolds number isotropic turbulence. The transfer in
spectral space is found to be local but results from interaction between separated
scales. The transfer among small scales is highly intermmitent in physical space.
The measurements suggest an important correlation between transfer among small
scales and the energy of large scales.

1. Introduction

Using results of low-Reynolds-number direct numerical simulations (DNS) Do-
maradzki and Rogallo (1988, 1990) analyzed the energy transfer in isotropic turbu-
lence and concluded that beyond the energy containing range the energy was trans-
ferred among scales of motion similar in size but that the interactions responsible
for this local energy transfer were nonlocal in k-space. The same transfer mech-
anism was also found when the eddy-damped quasinormal Markovian (EDQNM)
approximation was applied to high Reynolds number flows which are inaccessible
to the DNS technique.

The conclusions concerning the apparent universality of this transfer mechanism
are extended in this work to homogeneous shear flows and to high Reynolds number
isotropic flows obtained by large-eddy simulation. We also devise a physical-space
representation of the spectral energy transfer calculated in k space that allows us
to estimate the spatial intermittency of the energy transfer and the spatial corre-
lation between quantities defined using only large-scales flow information and the
dynamically important energy transfer among different scales. In particular this is
useful in evaluating the performance of subgrid-scale models formulated in physical
space e.g. the classical Smagorinsky eddy viscosity model.

2. Numerical Velocity Fields

We have used velocity fields generated by numerical simulations that were run
for sufficiently long times to fully establish nonlinear interactions.

The velocity field C128U8 is the result of a DNS of uniformly sheared homo-
geneous turbulence performed by Rogers (1986) and LES128 is the result of a

1 University of Southern California
2 NASA Ames Research Center
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large-eddy simulation of forced isotropic turbulence, at nominally infinite Reynolds
number, performed by Chasnov (1990). The energy spectrum of LES128 exhibits
a k~%/3 law over the entire range of simulated wavenumbers. The field K128 is
obtained from a DNS of isotropic turbulence performed by Rogallo (unpublished).
Its use is motivated primarily by the fact that the two dynamically important pro-
cesses that determine the evolution of the energy spectrum, i.e. viscous dissipation
and nonlinear transfer, are very well resolved. This resolution is obtained at the
expense of lowering the Reynolds number as compared with the two other cases.

3. Basic Quantities

The Navier-Stokes equations, in the Fourier spectral representation, for the fluc-
tuating velocity field u, subjected to uniform shear U = (sz;,0,0) are

(g + m) ua(k, ) = (~i/2) Paim(K) / w(P, #)um(k — P, )dp

+2s51 ""u,(k 1)+ shi 0 gz () = sbmiua(k, 1 1)
thkntn =0 (2)

where
Pnlm(k) = km(&ul - k'nkl/kz) + kl(&um - knkm/k2)7 (3)

v is the kinematic viscosity, and the summation convention is assumed. In subse-
quent formulae explicit time dependence wﬂl be omitted.
The equation for the energy amplitudes 3 ju(k)[* = 3uq(k)u} (k) is obtained from

(1)

Iu(k)l2 = —2uk?] 5 lu(k) + T(k) + ky o Lu()? - sRefur(kpu3(k)} (4)

Ok 2

where the asterisk denotes complex conjugate.
The nonlinear energy transfer is

T() = 3 Im [u;(k)Pnzm(k) / uz(p)um(k—p)dp] (5)

and the following two terms in (4) containing s describe energy transfer due to the
mean shearing deformation of turbulent eddies and turbulent energy production
by the mean shear respectively. A detailed description of these effects is given
by Deissler (1961), Fox (1964), and Lumley (1964), and is summarized in Hinze’s
(1975) monograpb. Note that the corresponding equations for isotropic turbulence
are obtained from (1) by taking s = 0. In particular, the nonlinear transfer term (5)
has the same form for both homogeneous shear turbulence and isotropic turbulence.




*—

Energy Transfer in Homogeneous Turbulence 3

The principal quantity of interest here is the energy exchange between a given
mode k and all pairs of modes p and q = k — p that form a triangle having k as
one of the legs and where p and q lie in prescribed regions P and @ of the spectral
space respectively. For a given k, confining p and q to P and Q is equivalent to
selecting a specific set of triangles from all of the possible triangles contributing to
the energy transfer at the wavevector k in (5).

In this work we choose P and Q as shells in the wavenumber space k — Ak <
lk| < k+ 3Ak with a shell thickness Ak. This choice is natural for 1sotrop1c
turbulence a.nd is also convenient for other homogeneous fields as first suggested by
Batchelor (1953).

The net nonlinear energy transfer to wavenumber band k is denoted by T(k)
and the contribution to this transfer resulting from nonlinear interactions between
wavenumbers in the band k¥ and wavenumbers in the bands p and ¢ is denoted by
T(k|p,q). According to this definition

T(k)=>_> T(klp,q)= Y P(kip) (6)
q P

b 4

where the P(k|p) is the result of summation of T'(k|p,q) over all bands ¢ and is
interpreted as the contribution to the net energy transfer into band k due to all
interactions involving band p.

The functions T'(k), P(k|p), and T(k|p, q) give progressively more detailed infor-
mation about energy transfer among different scales of motion in a turbulent field.
The method of computing these functions is described by Domaradzki and Rogallo
(1990).

4. Analysis of Energy Transfer in Spectral Space

All of the contributing terms of (4), computed for the field C128U8 and averaged
over spk-rical shells with thxckness Ak =1, are plotted in figure 1. The calculation
of the linear transfer sk; - ;2 1lu(k)[* suffers from low accuracy due to the coarse
resolution of k, and we believe that this term is close to zero for k > 40, contrary
to the plotted results. Despite this numerical error a few important conclusions
can be drawn from these results. Nonlinear transfer, viscous dissipation, and mean
shear all make significant contributions to the energy balance for wavenumbers
k < 40 which comprise the energy containing range and a significant fraction of
the dissipation range. Energetics of the smaller eddies (k > 40) is affected only
by nonlinear transfer and viscous dissipation which are roughly in balance. Thus
the energetics of turbulence in about half of the spectral domain (k > 40) is not
affected directly by the large scale mean shear.

The triad structure of the nonlinear energy transfer term is illustrated by plotting
P(k|p) in figure 2a as a function of & for p fixed in a wavenumber band beyond
the peak of the en spectrum. The contributions T'(k|p, q) to P(k|p), from all
significant bands g, 3&also included. The peaks of P(k|p) are located in the vicinity
of the band p indicating that the energy transfer is primarily between comparable
scales of motion. However, the decomposition into functions T'(k|p, q) reveals that
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FIGURE 1. Spectral energy balance for the field C128U8. production,
---- dissipation, —-— nonlinear transfer, ~--— linear transfer. The linear transfer
data has been smoothed.

the largest contributions to this local transfer come from the interactions involving
a scale in the energy containing range 5 < ¢ < 20. Thus for homogeneous shear
flow we obtain the same result as previously reported by Domaradzki and Rogallo
(1988, 1990) for isotropic flows: local energy transfer between two scales beyond the
energy containing range results from nonlocal interactions with scales in the energy
containing range.

Analysis of the nonlinear transfer for the two remaining velocity fields, LES128
and K128, provided the same qualitative results.

An attempt was made to find a similarity scaling for the functions T'(k|p, g). For
a given energy spectrum the following transformatiou collapses reasonably well all
curves T'(k|p,q) for a band p beyond the energy containing range.

T(kip,q) = pE(p)E(q)r.("—f) (1)

The similarity variable § = (k — p)/q is deduced from geometric relations for a
triad with legs k, p, and ¢ and the scaling factor pE(p)E(q) is ad hoc ( but is found in
the EDQNM theory for power-law spectra in the disparate-scale limit ). In figure 2b
we show the result of scaling (7) applied to the measured functions T'(k|p,q) of
figure 2a. Interestingly, the transfer scales with the energy E(q) of the large eddies
rather than with their rate-of-strain ¢E(q)'/? which is the scaling postulated by a
number of classical closure hypotheses (Monin and Yaglom, 1975). We have not
been able to propose a convincing dynamical model of transfer processes which
would provide scaling (7).
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FIGURE 2. Detailed triad contributions to energy transfer for case C128U8: (a)
unscaled, (b) scaled by (7). The transfer spectra T(k|p,q) are shown for band
40 < p < 45, and all bands ¢ that make a significant contribution to P(k|p).
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5. Physical Space Representation of Spectral Energy Transfer

Let us denote by NP2(k) the contribution to the integral (the noulinear term)
in (1) from only those interactions between modes p and q = k — p such that
each of them is confined to one of the two prescribed wavenamber bands P and Q.
This quantity is computed using the method described by Domaradzki and Rogallo
(1990). Its Fourier transform to physical space, N7 2(x) say, gives the contribution
to the rate of change of velocity in physical space u,(x,t) caused by the nonlinear
interactions involving two scales from the respective wavenumber bands P and Q
in the spectral space. Note that these interactions influence all modes k that can
form a triangle with modes such that one is in P and the other in Q. Consider next
a velocity field truncated to a prescribed wavenumber band X, i.e.

W5 = {u,.(k), if kek ®)

0, otherwise.

The Fourier transform of (8) to physical space, uX(x) say, represents the contri-
bution in physical space that scales from band X make to the total velocity. The
contracted product of these two physical space quantities

T*P2(x) = ug(x)N 2(x) (9)

gives a physical space representation of the energy transfer to/from modes in the
k-band due to their nonlinear interactions with modes in the p- and ¢-bands.

An interesting case is obtained by dividing wavenumber space into two disjoint
regions K (k < k) and P (k > k.). The quantity

Tses(x|ke) = T*PP(x) + T*%7 (x) (10)

provides a physical space representation of the rate of change of energy of large
scales k < k. due to nonlinear interactions involving small scales & > k.. This is
precisely the energy transfer process which is the subject of subgrid-scale modelling.

We have computed transfer functions (9) and (10) for various wavenumber bands
of the field K128. The low wavenumber band Q is chosen to cover the entire
energy containing range 0 < ¢ < 10. Figure 3a shows one plane from the full
transfer (9) representing in physical space the energy transfer to eddies in the band
23 < k < 28 caused by their interactions with eddies in the bands 20 < p < 25 and
0 < ¢ < 10. The transfer function is spatially intermittent and is predominantly
positive indicating a flow of energy from the larger scales p to the smaller scales
k. In figure 4b we plot the same function for 17 < k < 22. The transfer is now
predominantly negative as expected and occurs at roughly the same locations as
the transfer of figure 3a. We thus conclude that the local energy transfer between
similar wavenumber modes in spectral space is intermittent in physical space.

We have attempted to correlate this spatial distribution of energy transfer with
a number of simpler quantities (rate-of-strain, dissipation, energy, etc.) calculated
from the velocity field truncated to contain only either large or small scales. In
figures 4a and 4b we show the physical-space distribution of energy for the velocity
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FIGURE 3. Energy transfer T™P9(x) of K128 in physical space for 20 < p <
25,0<¢g<10: (a) 23 <k <28,(b)17<k <22
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FIGURE 4. Turbulent energy in physical space for the velocity field truncated in
spectral space to wavenumber band: (a) 23 < k < 28, (b) 0 < k < 10.
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field truncated to 23 < k£ < 28 and 0 < k < 10, respectively. Both energy fields
correlate very well with the energy transfer among small scales shown in figure 3.
Correlation of other calculated quantities with the energy transfer, notably the
square of the rate-of-strain tensor, was generally much worse. Therefore we conclude
that the energy transfer among small scales occurs mostly at those physical locations
that contain large amounts of turbulent emergy rather than at the locations of
high strain rate. This correlation is the physical space counterpart of the observed
importance of the nonlocal triads in the energy transfer process in spectral space.
We have used formula (10) to calculate subgrid-scale (SGS) energy transfer for
the field K128 with the cutoff wavenumber k. = 10. The full SGS transfer field,
plotted in figure 5a for a typical plane, is characterized by the presence of both
negative and positive regions. These indicate energy flux from and to the large
scales respectively due to subgrid-scale interactions. The classical Smagorinsky
model (Smagorinsky, 1963) for this transfer, based on the velocity field truncated
to the large scales 0 < k < 10, is plotted in figure 5b. Note that the model captures
properly the locations of the regions where the transfer is most intense but fails
completely to predict the inverse energy transfer from small to large scales.

6. Conclusions

Using results of direct numerical simulations of homogeneous shear turbulence we
have shown that the nonlinear energy transfer in spectral space beyond the energy
containing range has the same character as reported previously for isotropic turbu-
lence: local energy transfer caused by nonlocal triad interactions. The same conclu-
sion was reached for velocity fields obtained in large-eddy simulations of isotropic
turbulence at high Reynolds numbers.

An ad hoc scaling roughly collapses the transfer T'(k|p, q) to a self-similar form.
This scaling implies an important role which the energetic scales play in the energy
transfer among small scales, but the process does not appear to be simply straining
of the small scales by the large ones.

We have devised a physical space representation of the energy transfer processes
among scales of motion belonging to three distinct wavenumber bands in spectral
space and conclude from it that the energy transfer among small scales is highly
intermittent in physical space. Furthermore, regions of significant transfer appear
to correlate better with regions of significant large-scale energy than with those of
significant large-scale strain rate.

As a particular case we have calculated the subgrid-scale energy transfer in
isotropic turbulence. This SGS transfer exhibits regions of energy drain from large
to small scales as well as significant regions of reversed energy transfer from small
to large scales. The Smagorinsky eddy viscosity model captures the locations of
the most intense transfer but predicts that it is always from large to small scales,
contrary to the measurements from direct calculations.
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FIGURE 5. Subgrid scale energy transfer in physical space Tsgs(x|k.) for ke = 10:
(a) measured, (b) computed using the Smagorinsky eddy viscosity model for the
velocity field truncated to wavenumber band 0 < k < 10.
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PHYSICAL SPACE REPRESIZNHTATION O SPECTRAL ENERGY TRANSCER
IN HCMORENEOUS TURBULLNCE

J. ANDRZEJ DOMARADZKI
Universityv of Southern California
Los Angeles, CA 90089-1191 U.S.A.

Abstract-Direct numerical simulations of homogeneous turbu-
lence are used to analyze energy transfer among scales of motion in
spectral space. A physical space representation of such a spectral
energy transfer is devised and applied to the analysis of an eddy
viscosity with a sharp spectral cut-off,

1 Introduction

Statistically homogeneous turbulent fiows are conveniently repre-
sented in spectral (Fourier) space. In such a representation dynami.
cally important, elementary norlinear interactions involve three dis-
tinct modes with their wavenumbers forming a closed triad. Under-
standing these interactions is of paramount importance in the theory
of turbulence since essentially all turbulence closures rely on assump-
tions about the nature of the nonlinear interactions. Recently, using
results of direct numerical simulations (DNS) Domaradzki and Ro-
gallo [1] [2] analyzed the energy transfer in homogeneous turbulence.
They concluded that beyond the energy containing range the energy
was transferred among scales of motion similar in size but that the
interactions responsible for this local energy transfer were nonlacal
in k-space. The importance of such nonlocal triadic interactions in
the evolution of turbulent flows has been confirmed by Yeung and
Brasseur {3! who also provided analytical arguments (4] supporting
conclusions drawn from DNS.

Despite the usefullness of spectral representation as a theoretical
and numerical tool in turbulence research, various quantities (veloc-
ity, energy, vorticity, etc.) in the physical space often provide a more
natural description of turbulent flows., Thus it is of interest to have
the physical space representation of the nonlinear transfer processes
that dominate the spectral space dynamics. One such representation
has been proposed by Domaradzki et al. (5]. In this paper we discuss
other possible ways of representing detailed spectral energy transfer
in the physical space.

2 Interscale Energy Transfer in Spectral Space

The equation for the energy amplitudes 1|u(k)f? = dun(k)uy(k)
is:

2 M)l = -2 a1 + T(K) (1)

where uq(k) is the velocity field in spectral space, with the ex-
plicit dependence on time omitted, the asterisk denotes complex con-
jugate, v is the kinematic viscosity, and T'(k) is the nonlinear energy
transfer

T(k) = Re(up(k)Na(k)). (2

In the last equation N,(k) is the nonlinear term in the Navier-
Stokes equation

No(l) = (~i/2)Pum(¥) [ Ppu(plum(k-B), (3

where tensor Pom(k) accounts for the pressure and incompress-
ibility effects. The summation convention is assumed throughout.

Detailed energy transfer to/from mode k caused by its interac-
tions with wavenumbers p in a prescribed region P of the wavenum-
ber space and q = k — p in another region Q is

T?9(k) = Re(u;(k)Na”%(k)) 4
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where N.” < is (3) calculated with one of the contributing velocity
fields truncated to P and the other to Q. Details of such calculations
are provided in [2]. For homogeneous turbulence the regions P and
Q are usually chosen as spherical wavenumber bands. Similarly trun-
cating velocity u?,(k) in (4) to a spherical shell K results in a quantity
TXPC(k) which, after averaging over K, is interpreted as the energy
transfer to the band K resulting from nonlinear interactions of scales
in X with scales in P and Q.

3 Interscale Energy Transfer in Physical Space

Inverse Fourier transform, signified by tilde, of N,(k) is the sum
of the convection and pressure terms in the Navier-Stokes equation
in the physical space coordinates

diin(x) _ Gp(x)
“oe " Orm )

Similarly, using N.” (k) we can define its physical space coun.
terpart N7(x) as well as NX¥9(x) which is the inverse Fourier
transform of Nn”@(k) truncated to the band K. N7 9(x) can be
interpreted as the contribution to the rate of change of the velocity
field @m(x) at a point x made by the nonlinear interactions invalving
modes from the bands P and Q. Note that these interactions influ-
ence all modes k which can form a triangle with two other modes
such that one is in P and the other in Q. NXP2(x) represents a con-
tribution to the rate of change of iin(x) which is made by all modes
from K interacting nonlinearly with modes in P and Q.

The rate of change of the turbulent energy e(x) = it (x)im(x)
at a point x caused by the noniinear interactions is

Na(x) = —(x)

8lx) - anmifne). (©
Our goal is to decompose {6) into contributions from the interac-
tions among modes from predefined wavenumber bands X,7, and Q
i.e. to find a physical space counterpart of TEPR(k) which itself is
the result of such a decomposition of the transfer T(k) performed in
the spectral space. Despite uniqueness of such a decomposition in the
spectral representation, the procedure is ambiguous in the physical
space. Possible definitions are:

7,7 %(x) = E(x)NT%(x) , M
7,7(x) = (N %(x) , ®
7,778 (x) = Gm(x)FP0(x) , b

where @(x) is the inverse Fourier transform of un(k) truncated
to the band X.

Function TX79(x) is a straightforward counterpart of T"e(lf)‘
with a product of &5 and N7 taken in the physical rather than B
the spectral space. However, since u, (k) vanishes o\mid:ax. the
multiplication in the spectral space implicitly truncates N.?4(K) to
the same band o that TXP@(k) expresses transfer to the modes b
K only. In 75”9(x) the effect of nonlinear transfer to modes outside
K is present in the term N7€. b

An explicit truncation of N.”9(k) to X and multiplication o’{
@ seems to rectify this problem resulting in (8). The drawback
this definition i: that it does not satisfy a natural condition:

T RP(x) = Be(x) (10

—
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which is satisfied by both (7) and (9).

Function T5°?9(x) may be interpreted as a fraction of the rate
of change of the total energy ¢(x) due to variation of modes in K as
they are affected by nonlinear interactions with modes from P and
Q.

Thus none of the above definitions is an exact counterpart of the
spectral transfer T%”2(k) but (9) is the most appealing candidate.

An interesting special case is obtained by dividing a wavenumber
space into two disjoint regions K (& < k.) and P (k > k.). Quantity

Tsgs(xike) = T%7P(x) + TP (x) (11)

provides a physical space representation of the rate of change of
energy of large scales (k < k.) due to their nonlinear interactions
through wavenumber triads which have at least one of the legs in the
region P. This is precisely the energy transfer process which is the
subject of the subgrid-scale modeling.

We have computed transfer functions (7) and (11) for the statisti-
cally isotropic velocity field obtained in direct numerical simulations
performed with a resolution of 128° modes (maximum wavenumber
k = 64). The low wavenumber band Q remains always fixed and is
chosen to cover the entire energy containing range (0 < ¢ < 10). Fig-
ure 1 shows one plane from the full transfer (7) representing in the
physical space the energy transfer to eddies in the band 23 < k < 28
caused by their interactions with eddies in the bands 20 < p < 25
and 0 < ¢ < 10. The transfer function is spatially intermittent and
is predominantly positive, indicating a flow of energy from the larger
scales p to the smaller scales k.

We have attempted to correlate this physical energy transfer with
a number of simpler quantities (rate-of-strain, dissipation, energy,
etc.) calculated from the velocity field truncated in such a way as to
contain only either large or small scales. We found that the energy of
the velocity field truncated to large scales 0 < k < 10 correlates very
well with the energy transfer among small scales shown in figure 1.
Correlation of other calculated quantities with the energy transfer,
notably the square of the rate-of-strain tensor, was generally mnch
worse. Therefore we conclude that the energy transfer among small
scales occurs mostly at those physical locations which contain large
amounts of turbulent energy rather than at the locations of high
strain rate, an unexpected result. Indeed, until this paradox is re-
solved, we can not be confident that the particular measure of energy
transfer that we have used is the appropriate one.

We have used formula (11) to calculate subgrid-scale (SGS) en-
ergy transfer for the same field with the cutoff wavenumber k. = 10.
A plane from the full SGS transfer field is plotted in figure 2. The
transfer is characterized by the presence of both negative and positive
regions. These indicate energy flux from and to the large scales re-
spectively due to their interactions with the smaller scales. Standard
subgrid-scale eddy viscosity modeis predict transfer in one direction
only, from large to small scales.

4 Conclusions

We have devised a physical space representation of the energy
transfer processes among scales of motion belonging to three distinct
wavenumber bands in the spectral space and conclude from it that
the energy transfer among small scales is highly intermittent in the
physical space and correlates well with regions of significant large-
scale energy.

As a particular case we have calculated a subgrid-scale energy

transfer in isotropic turbulence. The SGS transfer exhibits regions )

of energy drain from large to small scales as well as significant regions
of reversed energy transfer from small to large scales. Classical eddy
viscosity models assume that transfer is always from large to small
scales, contrary to the results of direct calculations.
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Fig.l. Energy transfer in physical space 7572 for 23 < & <
28,20 < p< 25,0 < g < 10.

Fig.2. Subgrid scale energy transfer in physical space Tsgs(xik:)
for k. = 10.
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Detailed transfer functions T(k|p,q), which express turbulent energy transfer rate to modes
k caused by their nonlinear interactions with modes p and g, are analyzed using resuits

of direct numerical simulations of homogeneous turbulence. A previously found
phenomenological scaling for the functions T(k|p.q), which brings them into a self-similar
form, is used to deduce the form of the energy spectrum in the dissipation range
proportional to k™% exp(—ak) and the transfer spectrum proportional to exp(—ak). A
physical mechanism of the energy transfer process consistent with the self-similarity scaling is

proposed.

I. INTRODUCTION

Navier-Stokes equations for an incompressible, homo-
geneous turbulent flow have the following form in spectral
(Fourier) representation (see, e.g., Lesieur,' pp- 92-94):

d
a—tu,,(k)=—vk2u.,(k)+N,,(k). (n

Here, u,(k) is the velocity field in spectral space, with the
explicit dependence on time omitted, v is the kinematic
viscosity, and V,(k) is the nonlinear term

—i

Nn(k)=(—2'—)Pnlm(k) deP "I(D)um(k—l’)» (2)

where tensor P, (k) accounts for the pressure and incom-
pressibility effects. The summation convention is assumed
throughout.

The equation for the energy amplitudes i|u{k)|?
= {u,(k)u*(k), where the asterisk denotes a complex con-
jugate, is obtained from (1) and has the following form:

at 1

il 1 _ - 2 )

53 4k |>= 2vi? 5 lu(®)|*+T(k) (3)
In the last equation T'(k) is the nonlinear energy transfer

T(k)=Re[uf(k)N,(k)], (4)

expressing the rate of change of emergy of the mode k
caused by its nonlinear interactions with all other modes in
the system.

Detailed energy transfer to/from mode k caused by its
interactions with wave numbers p in a prescribed region 7
of the wave-number space and q==k—p in another region
2 is

T?2 (k) =Re[u* (k)N 2 (k)], (5)

where N 72 s given by formula (2), calculated with one of
the contributing velocity fields truncated to % and the
other to 2. Details of such calculations are provided by
Domaradzki and Rogallo.>> For homogeneous turbulence
the regions 7 and 2 are usually chosen as spherical wave-
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number bands centered at wave numbers p and ¢, respec-
tively. Similarly, truncating velocity uX(k) in (5) to a
spherical shell %", centered at a wave number k, results in
a quantity T¥?2(k), which is nonzero only for those
modes k that belong to the region J¥. Summing this last
quantity over all modes in ¥ results in a function denoted
as T(k{p,q), which is interpreted as the energy transfer to
the band ¥~ resuiting from nonlinear interactions of scales
in ¥ with scales in 7 and 2.

Total nonlinear energy tiranster I'(k) to a wave-
number band k (i.e., the region ") is obtained by sum-
ming contributions T'(k|p.q) from all possible bands p and
g:

T(k)=2 2 T(k|pg)= 2 P(ki|p). (6)
P 9 P

Here, the function P(k|p) is a result of summation of
T(k|p,q) over all g bands and is interpreted as the energy
transfer between wave-number bands k& and p. Also note
that T(k) can be obtained from (4) by summing T(k)
over all modes in the wave-number shell k.

Functions 7T'(k), P(k|p), and T(k|p,q) give progres-
sively more detailed information about energy transfer
among different scales of motion in the turbulent field.

For low Reynolds number homogeneous, isotropic,
and shear turbulence, the same qualitative result for the
function T'(k|p,q) was reported by Domaradzki and
Rogallo™* and Yeung and Brasseur* (isotropic turbu-
lence), and by Domaradzki et al® (shear turbulence): lo-
cal energy transfer between two scales k and p outside the
energy containing range caused by nonlocal interactions
with the third scale g in the energy containing range. For
high Reynolds number flows, similar behavior of the func-
tion T'(k|p,q) was observed by Ohkitani and Kida,® using
results of direct numerical simulations of a high symmetry
flow, and by Domaradzki er al,’ using velocity fields ob-
tained in large eddy simulations of Chasnov.” Moreover,
the function T'(k|p,g) computed by Domaradzki and
Rogallo® and Ohkitani and Kida® in the framework of the
analytical theories of turbulence exhibits the same features
as observed in the simulations.

®© 1992 Amencan Institute of Physics 2037




Even though there is little disagreement concerning
properties of the function T(k|p.g). there 1s a serious dis-
agreement concerning physical interpretaton and signifi-
cance of the observed form of T(k|p.q). in particular, for
the energy transfer process in the inertial range of turbu-
lence. Using an asymptotic analysis of triad interactions,
Brasseur® argued that the dynamical couplings between
large and small scales strengthen with increasing Reynolds
number, and this effect casts doubt on the validity of the
classical assumptions of local isotropy and, consequently,
may require modifications in Kolmogorov’s arguments,
leading to the universal form of the inertial range spec-
trum. On the other hand, Waleffe® dismisses physical sig-
nificance of such interactions entirely, asserting that ...
the nonlocal interactions with local transfer character of
triadic interactions is not property of turbulence physics,
but rather a general feature of the Fourier representation.™
Others (Zhou and Rogallo'®) are inclined to treat as phys-
ically interpretable quantities only certain integrals of
T(k|p,q), e.g., net energy flux across the spectrum, and
not the function T'(k|p,q) itself.

To some extent, these controversies are caused by a
fairly qualitative character of the above referenced analyses
and our poor understanding of the relation between dual
pictures of turbulence, one using a physical space and the
other a spectral (Fourier) space representation. In this
paper we draw several quantitative conclusions about the
energy and the transfer spectra from the observed form of
the function T'(k|p,q) and propose a particular mecha-
nism of interactions between scales in the physical space,
which is consistent with the observed behavior of the func-
tion T(k|p,q) in the spectral space.

il. SELF-SIMILARITY SCALING FOR THE FUNCTION
Ttkip,q)

In Ref. 5 three different velocity fields generated by
numerical simulations were considered. The velocity field
C128U8 was the resuit of a direct numerical simulation of
uniformly sheared homogeneous turbulence performed by
Rogers er al.'' and LES128 was the result of a large-eddy
simulation of forced isotropic turbulence, at a nominally
infinite Reynolds number, performed by Chasnov.” The
energy spectrum of LESI28 exhibits the Kolmogorov
k=37 law over the entire range of simulated wave num-
bers. The field K128 was obtained from a direct numerical
simulation of isotropic turbulence performed by Rogallo."?

For all three fields the functions 7 (k|p,q) were com-
puted. In Fig. 1(a) we show the functions T'(k|p,q) com-
puted for the field C128U8 for p fixed outside the energy-
containing range. The triad structure of the nonlinear
energy transfer term is best understood by considering in
this figure P(k|p) as a function of k (for p fixed) and
decomposing P(k|p) into functions T(k|p,q) for all pos-
sible wave-number bands g. Peaks of P(k|p) are located in
the vicinity of the prescribed p band, indicating that the
energy transfer is most effective among comparable scales
of motion. However, the decomposition into functions
T'(k|p.q) reveals that the largest contributions to this local
transfer come from the triad interactions with the third
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FIG. 1. Detailed energy transfer functions T(k|p.q) for field C128U8:
(a) unscaled, (b) scaled using Eq. (7). The transfer spectra T(k|p.g) are
shown for band 40 < p <45, and all bands ¢ that make a significant con-
tribution to P(k|p) [the solid line in (a)]. The vertical dashed lines
delineate the band p and different bands g for which transfer curves
T(kip.q) are plotted: dashed line and plus symbols, 0 < g <5; double-
dashed line and triangles, 5 < g < 10; dotted line and squares, 10< ¢ < 15;
dotted line and triangles, 15 < g < 20; double-dashed line and plus sym-
bols, 20 < ¢ < 25. In (a) peaks of the transfer curves broaden for increas-
ing ¢.

interacting scale in the energy-containing range (here, 5
< ¢ <20). Thus we observe local energy transfer between
two scales outside the energy-containing range caused by
nonlocal interactions with the third scale in the energy-
containing range.

In Ref. 5 it was found that for a given energy spectrum
the following transformation collapsed reasonably well all
curves T(k|p,q) for all bands p outside the energy-
containing range:

T (k—p)_ T(kipg)
\ ¢ ) PEQP)E(¢g)’

The similarity variable £=(k—p)/g is deduced from
geometric relations for triads with legs &, p, and g. For a
fixed p and g, with p > g, the range of wave numbers & that
can form a triangle with those wave numbers is p—g <k
< p+g. Therefore, for any such pair of fixed wave numbers
P and ¢ the variable ¢ will always be in the range —1<¢

(N
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"< I The scaling factor pE(p)E{g" 1s phenomenological.
The result of scaiing ¢~ appited to the functions 7!k p.q)
.1s plotted in Fig. 1(bi. The quality of the scaiing was com-
parable for all three fields considered and 1t was the only
scaling, among those tried. that had any success in collaps-
ing the numerical data. We must emphasize that the above
relation applies to a particular combination of two fixed
wave numbers, ¢ being in the energy-containing range and
P> q outside this range. Therefore, even though the func-
tion T(k|p,q) is symmetric in p and g the scaling is not,
since this particular ordering of the wave numbers p and ¢
1s assumed in (7).

No explanation for the scaling (7) exists and at this
stage it must be treated as a purely phenomenological re-
sult akin to experimental fitting procedures. Scatter in the
data in Fig. 1(b) is caused partially by this approximate
nature of the scaling and partially by the fact that in our
numerical procedure we are dealing with wave-number
bands of finite thickness (Ak=1,Ap=Ag=35) and not with
sharply defined wave numbers 4. p, and g. Despite these
shortcomings of the scaling relation (7) in what follows we
will assume that it holds for the functions T{k|p,q) and we
will explore its consequences and a possible physical inter-
pretation.

It is important to note that according to (7) the trans-
fer scales formally with the energy E(q) of the large eddies
rather than with their rate of strain gE(q)"/?, which is the
scaling postulated by a number of classical closure
hypotheses.!> At the present time the dependence of the
energy transfer process among small scales on the energy of
large scales observed in the simulations lacks a clear phys-
ical explanation. Direct coupling between large and small
scales is postulated in the linear theories of the viscous-
convection range of Batchelor'® and Kraichnan' and the
far dissipation range of Novikov'® and Saffmann,'” but
these theories assume that the small scales are affected by
the strain of the large scales, not their energy. For turbu-
lence in the inertial range the classical theories predict that
the energy transfer is dominated by the local interactions.
For instance. theories of Obukhov and of Heisenberg (see
Monin and Yaglom”) express a spectral energy flux
through a wave number k as a product of two wave-
number integrals involving the energy spectrum E(k) with
the largest contributions to both integrals coming from the
wave numbers in the vicinity of k. Thus the nonlocal in-
teractions discussed here are considered to be of little im-
portance in those theories. Similar conclusions are also
reached in the analytical theories of turbulence (see the
monographs of Lesieur' and McComb'®), which predict
that the energy flux through a wave number k in the iner-
tial range is dominated by scales from the spectral vicinity
of k. However, these conclusions are not necessarily incon-
sistent with the nonlocal character of the detailed transfer
function T(k|p,q) found by Domaradzki and Rogallo™
since the energy flux across the energy spectrum is ob-
tained as a wave number integral of T'(k|p,q), and because
of the canceilation effects, the integral may not reflect the
nonlocal character of the integrand. One must therefore be
cautious in drawing conclusions about the detailed transfer
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T{k p.g) from the anaiyses of integrated quanutes.

Some of these theories may provide a partial expiana-
tion of features of the transfer process observed in the sum-
ulations, but none of them is fully satisfactory. As already
noted, the classical theories based on the spectral energy
flux assumptions do not account expticitly for the nonlocal
interactions. On the other hand, the linear theories of the
far dissipation range. which have nonlocal character, lead
to the form of the energy spectrum proportional to
exp( —ak?), contrary to the form exp( —ak), which is ob-
served in the dissipation range of low Reynolds number
experiments (Ling and Huang' and Comte-Bellot and
Corrsin®®), simulations (Kerr*' and Kida and Mura-
kami®®), and is also predicted theoretically by Foias er a.?
and the analytical theories of turbulence (Kraichnan®*).
Among linear theories only Kraichnan’s analysis'* shows a
possibility of the behavior exp( —ak) for the spectrum of
the scalar field in the viscous—conductive range. However,
this result is obtained under assumptions of unknown va-
lidity, and no parallel result for the far dissipation range
behavior exists. The asymptotic analysis of Brasseur® re-
sults in a scaling of the energy transfer rate between two
small scales by the square root of the energy of the remain-
ing large scale rather than by its energy, as suggested by
the phenomenological relation (7). Also, Waleffe’s
analysis® is unable to produce this scaling. The EDQNM
theory reproduces properly the scaling (7) for power law
spectra in the disparate-scale limit (Domaradzki and
Rogallo?), in particular, the dependence of T(k|p,g) on
the energy E(q) of the large scales. However, the physical
interpretation of the observed transfer mechanism is not
made easier by referring to the EDQNM theory, which is
derived using assumptions about statistical properties of
turbulent fields and formal structure of the Navier-Stokes
equations rather than an intuitive picture of the physical
processes occurring in turbulent flows.

Ill. PHYSICAL INTERPRETATION OF THE SELF-
SIMILARITY SCALING

Dimensional analysis of the phenomenological relation
(7) indicates that T, has the dimension of time. Since the
function T, is the same for all pairs of wave numbers p and
g it must scale with a time scale of turbulence that does not
depend explicitly on p and g. It is thus natural to assume
that it is a certain integral time scale of turbulence, e.g.,
large eddy turnover time,

k. -2
®~U kJE(k)dk) , (8)
. .

where k. denotes the wave number at the end of the
energy-containing range. The quantity (8) has been com-
puted for all three velocity fields considered in this paper
and is compared in Table I with the values of the positive
peaks of the function T for these fields. The peak values
are within a factor 2 of the computed integral time scales.
This is probably as good an agreement as could be ex-
pected, in view of the fact that the formula (8) provides
only an order-of-magnitude estimate of the large eddy
turnover time.
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TABLE i Large eddy turnover times © and the peak vaiues of the
self-similar funcuion 7. for three different, numencal veiocity fields.

Field c} T
K128 0.11 0.230
C128U8 0.02 0.026
LESI28 0.04 0077

Consider now the energy transfer rate to all wave num-
bers k>p interacting with the wave-number bands (p,p
+A4p) and (g,g+ Ag). This transfer rate is equal to an area
under the positive peak of the function T'(k|p,q) and its
estimate, using (7), is

I (p,q) ~ > T(k|p.g)Ap Ag~gpE(p)E(g)Ap Ag ©.
k>p
(9)

The factor ¢ in the last equality appears because the
range of wave numbers k> p affected by the wave-number
bands p and ¢ is p<k<p-+¢, as discussed after formula (7).
Due to the localness of the energy transfer process, the
quantity II(p,g) may also be interpreted as the energy
transfer rate from the scales in the band (p,p+ Ap) caused
by their interactions with scales from the bands (4,¢9+ Ag)
and (p,p+9).

The classical spectral energy transfer hypotheses usu-
ally invoke dimensional arguments, eddy viscosity con-
cepts, or analogies with the turbulent energy production by
the mean fiow gradients in tne turbulent kinetic energy
balance equation. The last approach, used by Obukhov**
and Ellison,?® is the most appealing because it is based on
the formally correct equation. The main difficulty in this
approach is a proper interpretation of the equation in terms
of spectral quantities.

The turbulent energy production term is

—3U,
P= —u, i T

T (10)

where uu; is the Reynolds stress tensor and U, is the mean
flow. We will attempt to express (9) in a form consistent
with (10) so that the Reynolds stresses and the rates of
strain of the large-scale flow can be identified.

The following notation is introduced: L =1/¢—a
length scale of large eddies from the g band; /,=1/p—a

length scale of small eddies from the p band;
U,=E(g)Ag—energy of the large scales; u

=E(p)Ap—energy of the small scales. Using this notation
(9) can be rearranged as follows:

N(p.g) ~ [E(p)AP){[FE(9)Aq]*| P’E(g)Ag)'*@}

(1D

The formula (11) has the same form as (10) if the
following identification is made:

—u,u/-~uf,, (12)
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all U, U,
—_——-— 0.
ox, L, |,

The estimate (12) of the Reynolds stress is consistent
with the classical arguments (see Monin and Yaglom,'* pp.
212-225), which, on the basis of the dimensional consid-
erations, postulate proportionality berween the Reynolds
stresses and energy. Departure from the classical argu-
ments occurs in the estimate of U/dx, The estimate (13)
i a composite expression that involves a product of the
classical estimate U,/L,, time scale of turbulence ©, and
the rate of strain U /I Since U /I »>U/L,and ©5U /L,
this product is much larger than the classical estimate
U/L, and it suggests the existence of flow regions with
the rates of strain determined by the velocity scale of the
large eddies and the length scale of the small eddies. Such
large strains may be induced by a murual interaction of a
few large scales occurring over long enough time. For in-
stance, in boundary layer flows counter-rotating stream-
wise vortices with a length scale comparable to the
boundary-layer thickness § are known to generate, in about
one large eddy turnover time, internal shear layers with
much smaller length scales /€5 and the velocity scale com-
parable to the mean free-stream velocity, i.e., the velocity
scale of the largest eddies. Secondary instabilities of these
shear layers are responsible for the transition to turbulence
and the generation of small scales, as demonstrated exper-
imentally by Swearingen and Blackwelder’’ and numeri-
cally by Liu and Domaradzki.?® In free shear layer flows
similar strong internal shears have aiso been observed.
Thus the existence of intermittent regions with strains
much larger than postulated by the classical theones of
turbulence is plausible, even though it has not been sys-
tematically investigated for isotropic turbulence. It is in-
teresting to note that in the context of a passive scalar in
the viscous-conductive range Kraichnan'® observes that
large intermittent rates of strain, if they exist in a flow, will
determine the dissipation spectrum of the scalar. The
above analysis of the scaling (7) provides a plausible phys-
ical mechanism of the energy transfer process, where the
role of the large scales is to produce intermittent regions of
relatively strong, internal shears characterized by smaller
length scales, which serve as regions of efficient small-scale
energy transfer. If one notes that © represents the inverse
of a collective rate of strain of all scales from the energy-
containing range then (13) is a fraction of the total strain
U/, which is attributable to the action of the large scales
from the wave-number band (g,g~+Aq). The development
of such intermittent regions is the result of an evolution of
a flow over about one large eddy turnover time, and it 1s
unlikely that any analysis that does not explicitly account
for time evolution will be able 1o predict scaling (7). Note
also that in this interpretation dependence of the transfer
on rates of strain in the physical space is recovered, despite
its formal dependence on the large-scale energy in the spec-
tral representation.

To confirm (or reject) the interpretation of the energy
transfer process proposed above a detailed analysis of tur-
bulent fields should be made.
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IV. CONSEQUENCES OF THE SCALING RELATION
FOR LOW REYNOLDS NUMBER FLOWS

" Since the classical closure hypotheses usually concern
the energy flux through a given wave number, say &,
® k
Wik)= fk T(k')dk'= - /(0 T(k)dk', (14)
i.e., the energy transfer rate 0 all wave numbers k’'>k
from all wave numbers k' <k, it is important to investigate
the consequences of the scaling (11) on the flux (14).
The flux (14) is obtained from (11) by considering
transfer from all p<k and g<k. Because of the locality of
the energy transfer only wave numbers p in the vicinity of

k. for instance between 1/2k and &, will contribute. There-
fore,

W(k)~f dpf dq 1(p,q)
(1/2)k

k k
~@(f pE(p)dp)(f qE(q)dq). (15)
{V/2k 0

For & beyond the energy-containing range the integrals
in (15) can be estimated as follows:

k
J‘ PE(p)dp~KkE(k), (16)
(

172)k

k vt U .
[ eE@de~7~5. (1)
where U and L are the integral velocity and length scale,
respectively. Note that, in general, these quantities depend
on the wave number k, for instance U= U(k). Using these
formulas the estimate of the energy flux becomes

W(k)~KRE(K)U(k). (18)

The same result is obtained more directly by assuming
that in (11) U, and L, are replaced by the mtegral scales
U and L, and the ratc of strain of small scales u is ap-
proximated by Ellison’s hypothcms

w’~pE(p). (19)

Note, however, that the derivation of Eq. (18) relies only
on the scaling relation (7) and not on its physical inter-
pretation given in the previous section. Therefore, the re-
sults of this and the next section are independent of the
particular physical interpretation proposed in this work.
Iz summary, the formula (18) corresponds to the fol-
lowing closure assumption for the spectral energy flux:

— av;
W(k)~—u,-uj-‘9%/"~[kE(k)][kU(k)]. (20)
)
where the Reynolds stress of the small scales is represented
bv (19) and the rate of strain acting on these scales is given
as a ratio of the integral velocity scale U and the length
scale of the small eddies 1/k. Note that in both Obukhov
and Ellison theories this rate of strain is estimated by the
following expression:
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The closure hypothesis (20) may be used to predict the
form of the energy spectrum for the wave numt~rs beyond
the energy-containing range, where it applies. The spectral
energy equation is

a rk k
= f E(k',t)dk‘=—W(k,z)—2vf k2E(k')dk'.
at Jo o

(22)

In turbulence at low Reynolds numbers the energy
spectrum falls off rapidly for increasing wave numoers &
and for the wave numbers beyond the energy-containing
range,

k ] 3
f E(k 1)dk' = f Ekndk =38, (23)
0 0
where u is the root mean square of turbulent velocity.
Using the velocity scale U(k)=u, Eq. (22) may be
rewritten as
k
e=BICE(k)u+2v f k"E(k’)dk, (24)
0
where € is the energy dissipation rate, B is a constant, and
the expiicit time dependence is omitted. Differentiating
(24) with respect to k we obtain the equation

Bu— {KE(k))+2vk*E(k)=0, (25)
which has the following solution:
1
E(k)~1? exp(—ak), (26)

where a=(2v)/(Bu). Equation {25) expresses an approx-
imate balance between viscous dissipation and nonlinear
transfer

aW

T{k)= —a—k~exp( —ak)
in the far dissipation range. Equations (26) and (27) are
important conclusions derived from the scaling relation
(7), which can be compared with experimental and nu-
merical results for low Reynolds number turbulence.

In Fig. 2(a) we plot the energy spectrum for isotropic
field K128 and in Fig. 2(b) the spectral energy balance for
this field. At this low Reynolds number, R; =25, all spec-
tra are well resolved, with both the dissipation spectrum
and the transfer spectrum vanishing for large wave num-
bers k and in the approximate balance outside the energy-
containing range 0 < k < 10, where the above derived _x-
pressions should be valid. Using the log-linear scales we
plot in Fig. 3 the dissipation spectrum, i.c., the energy
spectrum multiplied by &, and the transfer spectrum for
this field with wave numbers & rescaled using the Kolmog-
orov length 17=0.0344. It is seen that the functional form.
Eqgs. (26) and (27) are in an excellent agreement with the
numerical results for the wave numbers k>10 (nk>0.3),

(27)
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FIG. 2. (a) Energy spectrum for isotropic field K128 plotted using linear
scales to accentuate the energy-containing range 0 < k < 10. (b) Spectral
energy balance for the field K128. Dashed line, dissipation spectrum
—2vk*E(k): dash-dotted line, nonlinear energy transfer T'(k); dotted
line, sum of dissipation and transfer, T(k) —2vi2E(k)=3E/dt.
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FIG. 3. Dissipation 2viE(k) (solid line) and transfer spectrum T'(k)
beyond the energy-containing range (broken line) for the field K128
plotted using log-linear scales and wave number & normalized by the
Kolmogorov length scale 9.

2042 Phys. Fiuids A, Vol. 4, No. 8. September 1992

10

T v
I3

" :
' f T -
W3z 3
: z
r ;
[ ]
“"[ E
£ 3
[

107¢ E
£ f
: ]

104 -
0 02 04 06 wb 1 12 14 16 1B 2

FIG. 4. Dissipation spectrum 2vi2E(k) and transfer spectrum T'(k)
beyond the energy-containing range for the turbulent Taylor-Green vor-
tex field plotted using log-linear scales and wave number k normalized by
the Kolmogorov length scale .

i.e, for all wave numbers beyond the energy-containing
range. The slope of the curves in Fig. 3 is a/7=<2.19.

In Fig. 4 we plot in the same manner the energy and
transfer spectra for a flow at higher Reynolds number,
R, =70, obtained in numerical simulations of a decaying
Taylor-Green vortex performed with an effective resolu-
tion 512° modes (Brachet?®). For the wave numbers be-
yond the energy containing range Egs. (26) and (27) pro-
vide a very good fit with the nondimensional constant
a/n=2.08.

Finally, in Fig. 5 the experimental results of Comte-
Bellot and Corrsin®® for the dissipation spectrum of grid
turbulence at R,=60.7 and corresponding numerical re-
sults of Ruetsch and Maxey® for forced turbulence at
R; =60 are shown, again exhibiting good agreement (ex-
perimental and numerical data form a straight line on the
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FIG. 5. The normalized dissipation spectrum 2vA°E(k) in experiments of
Comte-Beliot and Corrun'® (O) and numencal simulations of forced
isotropic turbulence of Ruetsch and Maxey™ ().
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log-linear piot' with formuia (26; bevond the energy-
contaimng range. The nondimensional constant 3/7=2.12
-in this plot.

In view of the qualitanve (scaling) character of the
assumptions leading o0 the closure (18) the agreement be-
tween predictions (26) and (27) and the observed form of
the energy and transfer spectra is surpnsingly good. In a
similar range of Reynolds numbers Kerr*' fitted numerical
energy spectra by a formula E(k) ~k~*? exp( —ak), with
the nondimensional constant a/n=S5.1. and Kida and
Murakami®* obtained the best fit to the energy spectrum in
the dissipation range as k~'®exp( —ak) with a/n=4.9.
Sreenivasan’! used as the best fit to the experimental en-
ergy spectra the formula exp({ —ak) with a/7=12.7 for
0.1<kn<0.5 and a/n=8.8 for 0.5<k7n<1.5. These results
and Eq. (26) all predict the existence of the exponential
factor in the formula for the dissipation range of iow Rey-
nolds number turbulence, but they differ in the form of the
algebraic prefactor. At the present time the quality of the
availabie data is probably not sufficient to distinguish be-
tween different prefactors. In any case, the exact value of
the. exponent m in the prefactor proportional o (kn)~"
with positive m will influence the behavior of the energy
spectrum only for kn=0(1). Note, however, that the
value of the exponent a/n will depend on the exact form of
the prefactor, decreasing for increasing m, since for a given
energy spectrum the exponential function must compen-
sate for different fall-off rates associated with different pre-
factors.

At this point it is appropriate to briefly compare our
approach to compute the energy flux with the recent re-
sults of Waleffe.® His analysis, performed for the inertial
range spectrum, leads to the conclusion that two distinct
classes of triad interactions operate in turbujent flows. Tri-
ads in class R (for reverse transfer) are characterized by
the middle leg in the triad transferring large amounts of
energy to the longest leg (small scale) and small amounts
to the shortest leg (large scale). In triads belonging to the
class F (for forward transfer) the shortest wave number is
losing energy to the middle and the smallest wave num-
bers. The triads considered as dominant in the present
work, which are nonlocal but resuit in the local energy
transfer, belong to class R in Waleffe’s nomenclature. An
important result from his analysis is that the energy flux
(14) is determined primarily by class F interactions and
the weaker effect of class R interactions is the inverse en-
ergy flux, from small to large scales.

In view of this result our approach to compute the
energy flux using Eq. (15), which takes into account only
the class R triads, should be incorrect. To resolve this
apparent contradiction between the present approach and
Waleffe’s® theory we have calculated for the isotropic field
K128 the energy flux using Eq. (14) and the approxima-
tion analogous to (15), where the numerically computed
T(k'|p,g) is integrated over 0<g<ik, tk<p<k, and
k’ > k. The inequalities for p and ¢ also imply that the
length of the third leg of the triad does not exceed $k. Both
results are compared in Fig. 6 for wave numbers k> 20
(nk=0.688), i.c., outside the energy-containing range.
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FIG. 6. Totai energy fiux #' k. (soiid line) and contribution to the flux
from tnads with wave numbers 0 < g <3k, %k <p<k, and k < k’ <3k (bro-
ken line). The axes are scaled as in Fig. 3 to facilitate comparison of
slopes 1n both figures.

Clearly, the approximation is in an excellent agreement
with the exact energy flux, and we thus conclude that it is
fully supported by the numerical data in the dissipation
range. Moreover, formuja (18) and the predicted form of
the energy spectrum (26) imply that the energy flux
should be proportional to exp(—uak). The numerical re-
sults plotted in Fig. 6 are in agreement with this conclu-
sion.

It may also be noted that as seen in Fig. 6 these R-type
interactions generally overestimate the total energy flux
(but by no more than 10% ). We may thus expect that the
remaining triads, mostly of the F type, will result in the
inverse energy transfer to counter the excess of the energy
transferred to small scales by the R interactions. Therefore,
the numerical results point to the energy transfer mecha-
nism in the dissipation range, large forward transfer by the
class R triads, and small inverse transfer by the F class
interactions, which is in the diametrical opposition to the
mechanism proposed by Waleffe’ for the inertial range dy-
namics. Among other numerical works, which also do not
agree with Waleffe’s” theory are the resuits of Ohkitani and
Kida.® Those authors found that in their simulations of a
flow at R, =180, three types of interactions dominated.
Among them, the class R triads constituted about 30% of
all active triads, the class F about 159%, and more than
50% triads were characterized by both the largest and the
middle scale losing energy to the smallest one, thus not
adhering to Wallefe's classification. In view of the above
disagreements it seems evident that the turhulence dynam-
ics at these lower Reynolds numbers ma. > :ubstantially
different from the dynamics of turbuler * '» the nertial
range.

V. CONSEQUENCES OF THE SCALING RELATION
FOR HIGH REYNOLDS NUMBER FLOWS

Closure (20) is based on the phenomenological rela-
tion (7), which was obtained from the results of the direct
numerical simulations of low Reynolds number turbulence.
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However. relation (7) was also found to hold for the ve-
locity field obtained 1n a large eddy simulation of turbu-
lence at nominally infinite Reynolds number (LES128). It
may therefore be useful to formally explore the conse-
quences of this closure for high Reynolds number flows.

In the far dissipation range of high Reynolds number
turbulence Eq. (22) still holds, but it is unlikely that the
velocity scale will be given by the formula (23), which
emphasizes scales from the energy-containing and inertial
ranges. In this case we follow Batchelor,' Novikov,'® and
Saffmann,"” who assumed that the far dissipation range
eddies interact most strongly with the Kolmogorov eddies
characterized by the velocity scale v;= (ve)'’*. With this
velocity scale the formula (26) becomes

2
—= (nk) |,
B(n ))

where 7 is the Kolmogorov length scale:

The exponential factor in (28) is in agreement with
some other theories of the far dissipation range. For in-
stance, Kraichnan predicts E(k)~k exp(—ak) in the
framework of the direct interaction approximation theory
and Foias er al?® obtain an exact sharp estimate E(k)
=o[exp( —cnk)] using spectral properties of the Stokes
operator. That work also suggests the prefactor k=*, but
this result is not considered mathematically exact by the
authors. The faster falloff, proportional to exp(—bk?), is
suggested by a number of older theories (sece Monin and
Yaglom'®) and the more recent work of Smith and
Reynolds.’? However, Manley** showed that the procedure
employed by Smith and Reynolds,* after a reasonable
modification, provides results in agreement with the
exp(—ak) behavior. It seems that, at the present time, the
experimental and numerical results favor the exp(—ak)
behavior with a simple, algebraic prefactor, whose exact
form remains to be determined.

In the inertial range the energy spectrum decays too
slowly to use the approximation (23). We take instead

1
E(k)~P exp( (28)

k 172
U=U(k,t)~( fo E(k’,t)dk') . (29)
To avoid divergence of the integral at small k the in-
ertial form of the energy spectrum cannot be continued to
k=0 and the specific form of the energy spectrum, which
vanishes at the low wave numbers, must be used.
Because of the limitation to the inertial range wave
numbers the viscous term in Eq. (22) may be neglected,
and using (29) one obtains the following equation:

e=Bk’2£’(k)( f E(k’,t)dk') . (30)
0

Introducing a variable (k) =S5E(k’,1)dk’, Eq. (30)
1s reduced to

e=pk6'? a9

T (31)

The solution to (31) is
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where u=[_%.f@‘E(k’,t)dk’]”2 is the mean turbulent veloc-
ity. For decaying turbulence € ~u*/L, where L is the inte-
gral length scale of turbulence. Then, if the constant £ is of
the order unity and k»1/L (inertial range), we may ex-
pand the expression (32) in Taylor series and keep only
the lowest-order term in 1/k. Differentiating this result
with respect to k& we obtain the energy spectrum for the

wave numbers 1/L<k<1/7:

t32)

to1 's2

Gin;=

E(k 2 l/352/3 -3/3 33
(k)= (551) k-, (33)
i.e., the classical Kolmogorov inertial range form. Assum-
ing the value of the Kolmogorov constant Cy =~1.5-2.0, we
obtain for the constant 8 a range of values 0.44-0.29.

The coefficient a/n=2/8 in the exponential law (28)
for this range of values of the Kolmogorov constant is
between 4.5 and 6.9. This value does not agree with the low
Reynolds number result a/n=2. The disagreement may
reflect differences between Iow and high Reynolds number
flows or, what is more plausible, an inadequacy of the as-
sumption that the far dissipation range eddies interact
most strongly with the eddies characterized by the velocity
scale u=uv;=(ve)"*. Indeed,

a 2vl1 ka

n Bun Bu’
and if the velocity scale ¥ is replaced by the physically
more relevant velocity scale associated with the peak of the
dissipation spectrum, v;> U, the constant a/m will de-
crease. However, it does not seem that the value of the
constant a/7 for the far dissipation range can be uniquely
determined in the framework of the above scaling argu-
ments.

(34)

VI. CONCLUSIONS

Employing the phenomenological scaling relation for
the detailed energy transfer functions T'(k|p.g) the physi-
cal interpretation of the observed local energy transfer
caused by nonlocal triads i1s proposed. In this interpreta-
tion the large scales of turbulence, through their mutual
interactions, create intermittent regions of relatively large
rates of strain, where most of the small-scale energy trans-
fer occurs. An important feature of this interpretation, sug-
gested by the presence of the large eddy turnover time in
the scaling relation, is an introduction of the time scale into
the problem. This implies that any successful explanation
of the observed energy transfer process must invoke the
time evolution of turbulence. It may be an important ob-
servation in view of attempts to explain the transfer process
by analyzing Navier-Stokes equations considered at a
given instant of time. In such analyses valid assumptions
about amplitudes of Fourier modes are made and conclu-
sions about the dependence of energy transfer on the am-
plitudes are drawn. The transfer process, however, is de-
termined by both the amplitudes and the phases of the
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- Feurier modes and the phase reiationships are not known
a priori and must be found by considening the time evolu-
tion of the system. This fact may explain why the scaling
relation (7) 1s broadly consistent with the analytical theo-
ries of turbulence, which take into account the time evo-
lution of turbulence, and why other approaches failed to
predict this scaling. In this respect it must be stressed that
the scaling relation (7) may be treated as being equivalent
to an experimental result, and thus any theoretical expla-
nation of the energy transfer process should be required to
predict it.

Independently of its physical interpretation the scaling
relation (7) was used to deduce the functional forms of the
energy and transfer spectra in the far dissipation range of
low Reynolds number turbulence. Considering an approx-
imate character of the analysis, the predicted forms are in
surprisingly good agreement with several numerical and
experimental results for the range of nondimensional wave
numbers k7 < 2.

Assuming the validity of the scaling relation for high
Reynolds number flows, the k~>’3 behavior of the energy
spectrum is predicted in the inertial range and the
k=2 exp(—ak) form in the far dissipation range. These
resuits are on a less firm ground than the results obtained
for low Reynolds number flows. The reason is that the
applicability of the scaling relation is confirmed only for
large eddy simuiation results of high Reynolds number
turbulence, which are influenced by the additional assump-
tions made in this numerical methodology. Therefore, the
more appropriate conclusion would be that the scaling re-
lation (7) does not contradict the inertial range and the far
dissipation range behavior of high Reynolds number tur-
bulence.
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Abstract

Using a velocity field obtained in a direct numerical simulation of isotropic turbu-
lence at a moderate Reynolds number we analyze the subgrid-scale energy transfer in
the spectral and the physical space representation. The subgrid-scale transfer is found
to be composed of a forward and an inverse transfer components, both being significant
in dynamics of resolved scales. Energy exchanges between the resolved and unresolved
scales from the vicinity of the cutoff wave number dominate the subgrid-scale processes
and the energetics of the resolved scales are unaffected by the modes with wave numbers
greater than twice the cutoff wave number. The dominance of nonlinear interactions
among the largest scales in the subgrid-scale energy transfer process suggests that the
resolved nonlinear term may serve as a basis of a new approach to the subgrid-scale

modeling.




1 Introduction

Three approaches used in numerical predictions of turbulent flows are direct numerical simu-
lations (DNS), large eddy simulations (LES), and Reynolds averaged Navier-Stokes (RANS)
simulations. With currently available computer capabilities the applicability of the DNS
methods is limited to low Reynolds number turbulence. In practical applications for high
Reynolds number flows the RANS techniques are used most frequently. The main draw-
back of this method is the need for introduction of a number of phenomenological closure
assumptions and empirical, flow dependent constants.
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1 and more recently by Lesieur ¢,

The LES techniques, reviewed by Rogallo and Moin
are a compromise approach between DNS and RANS. In the LES large, resolved scales of a
turbulent flow are simulated directly, akin to the DNS approach, and their interactions with
the small, unresolved scales are modeled like in the RANS approach. However, contrary
to the RANS, only a part of the nonlinear interactions is modeled in the LES, and since
the modeled interactions involve small scales (usually in the inertial range of turbulence)
which have more universal character than flow dependent large scales, the hope is that such
modeling can be accomplished with less empiricism and with greater help from the theories
of homogeneous turbulence than it is the case for the RANS approach. At the present
time the most widely used subgrid-scale models are the Smagorinsky model 3 for the LES
performed in the physical space representation and the Kraichnan 4 and the Cholet and
Lesieur models 9 if the spectral representation is used. These, as well as other subgrid-scale

models, despite exhibiting a number of desirable properties like accounting properly for the




global energy flux from the large to the small scales, are known to be deficient in some
respects. For instance, the models are usually purely dissipative. However, the process of
the subgrid-scale energy transfer is dissipative only in the mean and locally in the spectral
or the physical space the effect of the subgrid-scale interactions may be to either decrease or
increase the energy of the large, resolved scales. Various attempts were proposed in the past
to account for the inverse energy transfer in the subgrid-scale modeling for homogeneous
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8 and for inhomogeneous flows 9 but no generally accepted method exists.

The practical importance of the LES techniques and the deficiencies of the existing
subgrid-scale models suggest that better understanding of subgrid-scale interactions is needed
if improvements in the LES methods are to be made. To compute the effects of the subgrid-
scale nonlinear interactions a full velocity field in three-space dimensions must be known;
such detailed information cannot be obtained using current experimental techniques. Re-
quired information, however, is available in the direct numerical simulations of turbulent
flows and has been used in the past to investigate the subgrid-scale interactions and to as-
sess directly the validity of the models. Such an approach was pioneered by Clark et al. 10
for the physical space modeling and by Domaradzki et al. 11 for the spectral space mod-
eling. A major limitation of this approach is that only low Reynolds number flows can be
simulated numerically and thus it is unclear to what extent conclusions from such analyses
are applicable to more important case of high Reynolds number turbulence.

In this work we investigate the properties of the subgrid-scale nonlinear interactions

using both the physical and the spectral space representation for numerically simulated,

decaying homogeneous turbulence. The simulated flow is the Taylor-Green vortex and using




12,3t is possible to increase Reynolds number by a factor 2 as compared with

its symmetries
the general nonsymmetric flows simulated with the same number of computational modes.
It is hoped that the higher Reynolds number and the existence of a short inertial subrange

for this flow can make results of such an investigation applicable to high Reynolds number

turbulence.

2 Numerical simulations

The Taylor-Green vortex flow 13 develops from the following initial condition:

u = sin(z)cos(y)cos(z)
v = —cos(z) sin(y) cos(z) (1)
w = 0

At time t = 0 the flow is two-dimensional but becomes three-dimensional for all times ¢t > 0
when it develops into initially well organized, laminar .structures in the form of vortex sheets
which subsequently become unstable resulting eventually in a fully turbulent flow. It was
noted by Orszag 12 that the initial condition (1) has a number of symmetries which are
consistent with symmetries of the Navier-Stokes equations and are thus preserved in time
as flow evolves. In the context of spectral simulations the symmetries of the flow may
then be used to reduce number of computational modes needed to describe the flow for a
prescribed range of resolved scales. This idea was implemented by Brachet et al. 14 who

were able to simulate the Taylor-Green vortex flow with an effective spatial resolution of

NT




256 modes at a computer cost equivalent to simulating a general, non-symmetric flow with
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the resolution of 64° modes. More recently Brache reported results of simulations of the
Taylor-Green flow performed with an effective resolution of up to 864° modes and Reynolds
number R, = 140. A similar approach to increase range of scales and Reynolds numbers
in numerical simulations of turbulence by employing symmetries of Navier-Stokes equations
was pursued by Kida and his collaborators in a n- 1ber ... paper516’17’18, employing a flow
with even greater number of symmetries than the Taylor-Green vortex. At the present time
these highly symmetric flows are the most computationally efficient means of numerically
simulating isotropic turbulence with Reynolds number R on the order 100.

Using the numerical code developed by Brachet 15 we have performed direct numerical
simulations of the Taylor-Green vortex flow in order to generate a turbulent velocity field
for the purpose of an analysis of the subgrid-scale nonlinear interactions. Since the details of
such simulations were extensively described by Brachet et al. 14 and Brachet 13 we report
here only a few main features of the time evolution of the flow and its properties at the end
of the run. The velocity field at the end of the run is used in the subsequent sections for the
analysis of the subgrid-scale interactions.

The flow is contained in a cube with a side length 27 resulting in wave numbers k =
(k1, k. k3) in the spectral space with integer components k;. In the physical space the flow
is periodic with the period 27 in each coordinate direction z,y, and z. Because of the
symmetries the flow never crosses the boundaries z,y, and z = 7 and in the subsequent

discussion it will be visualized in the so-called impermeable box 14 <z,9,z <7 The

effective spatial resolution in the simulations was 5123 modes, which, after dealiasing by the




2/3 rule, provides the maximum wave number k,, = 170 in each coordinate direction. Since
the velocity and the length scale of the initial flow are order unity the large eddy turnover
time is also order unity and Reynolds number is equal to the inverse of molecular viscosity
1/v (3000 in the simulations). The simulations were run until maximum time t,, = 18, i.e.
for several large eddy turnover times, with the time step At = 0.0025.

In Figs. 1(a) - 1(d) we plot the time evolution of the total turbulent energy, the total
dissipation rate €, skewness S, and microscale Reynolds number R,, respectively. Until time
t = 5 the evolution of the flow is essentially inviscid with the total energy nearly constant.
During this period small scales are generated from the initial condition (1) resulting in a
subsequent rapid rise of the dissipation rate which peaks at ¢ ~ 10 and later decays because
of the decrease in the intensity of turbulence caused by the viscous damping. The skewness,
after fairly chaotic behavior until t 10, at the end of the run approaches —0.5, which is the
generally accepted value for this quantity in fully developed isotropic turbulence. The initial
value of R, exceeds 1000, decays rapidly becoming an order of magnitude less at the time
of the peak in the dissipation rate t =~ 10, and slowly approaches the final value Ry =~ 70 at
the end of the run.

The unnormalized energy and dissipation spectra at the end of the run are plotted in
Fig. 2(a). Small number of modes in the low wave number shells causes relatively large
fluctuations in these quantities at low wave numbers. In the range of wave numbers k < 20
the energy spectrum conforms to the inertial £~%/3 law with the Kolmogoroff constant ::.
the range 2.2 to 2.7. The dissipation spectrum peaks at k ~ 20 which, for the calculated

Kolmogoroff length scale n = 0.011 in the units used, corresponds to nk = 0.2. This valu.




agrees with experimental findings 19 locating the dissipation peak in high Reynolds number
turbulence at a wave number order of magnitude less than 1/7. Because of a significant
overlap of the energy containing range and the dissipation range it is unclear if the observed
inertial range spectrum for £ < 20 is the result of the same dynamical processes that operate
at very high Reynolds numbers where there exists wide separation between the energy and the
dissipation range. Also unusually high value of the Kolmogoroff constant in the simulations
casts doubt on the significance of the observed inertial subrange as being indicative of high
Reynolds number turbulence dynamics. We may claim at best that the Reynolds number
in the simulations is high enough to capture the beginnings of the inertial range dynamics
but too low to sep:arate it from the effects of the dissipation range dynamics. In the far
dissipation range for k£ > 20 the dissipation and the nonlinear transfer spectra balance each
other and have the functional form proportional to k=% exp(—ak) as seen in Fig. 2(b). This
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form was derived t, Domaradzki <V using scaling properties of the detailed energy transfer

observed in low Reynolds number turbulence.

3 Basic quantities

For homogeneous turbulence incompressible Navier-Stokes equations in spectral (Fourier)

representation are:

2 i) = —vua(K) + N, (2)

Here, u,(k) is tue velocity field in spectral space, with the explicit dependence on time

omitted, v is the kinematic viscosity, and N,(k) is the nonlinear term




Na(l) = =5 Prin(k) [ pus(pum(k ~ p) 3

where tensor Py, (k) accounts for the pressure and incompressibility effects. The summation
convention is assumed throughout.

Let’s assume that the wave number space is divided into two non-overlapping regions, £
(|k| £ k.) signifying large scales, and S (|k| > k) signifying small scales. In the LES ter-
minology these scales are also referred to as the resolved and unresolved scales, respectively.

In the LES an evolution equation for the velocity field u,(k) truncated to the region £

un(k) if kel
up(k) = (4)

0 otherwise

is sought. The truncation operation is trivially applied to the linear terms in Eq. (2). The
nonlinear term (3) is decomposed as follows. First, it is computed with one of the contributing
velocity fields truncated to U and the other to V, where U and V may be any of the two
previously prescribed regions. Details of such calculations are provided by Domaradzki and
Rogallo 21,22 Resulting quantity, denoted by N,“Y(k), describes the modification of the
mode k caused by all triad interactions involving k and two other scales, one belonging to &/
and the other to V. Second, to retain the effect of such nonlinear interactions on the large
scales only, the quantity N,.uv(k) is truncated to the region £, with the result denoted by
N,*"(k). The evolution equation for the large scales £ becomes:

0

Eu,.‘(k) = —vku,“(k) + Na(klk.) + Na'(k|k.), (5)




where the resolved nonlinear term is

Na(klk) = N 54 (k), (6)

and the subgrid-scale nonlinear term N,’(k|k.) is

Na*(klke) = NaS5 (k) + Na S5 (k). (7)

In practice, the most straightforward way to compute (6) and (7) is to first use (3) with
the full velocity fields uw;(p) and um(k — p) and truncate the result to the region £ to obtain

the total nonlinear term

N (klke) = Na(klk:) + Na’(klke) (8)
Next, Eq. (3) is used again with the truncated velocity fields uf(p) and u%,(k — p) and
the result is truncated to the region £ giving the resolved nonlinear term N,(k|k.) (Eq.
(6)). The subgrid-scale nonlinear term (7) is obtained as the difference between the total
nonlinear term (8) and the resolved nonlinear term (6).
The above described procedure has its exact counterpart in the physical space represen-
tation. Inverse Fourier transform, signified by tilde, of N,(k) (Eq. (3)) is the sum of the
convective and pressure terms in the Navier-Stokes equation in the physical space coordinates

din(x)  9p(x)

Nn(x) = —’a.'(X) 6(13' 61‘ . (9)

Similarly, using N.“¥(k) we can define its physical space counterpart N¥Y(x) as well as
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NKUV(x) which is the inverse Fourier transform of N,%¥(k) truncated to the region K (which
is either £ or §). [v*Y(x) can be interpreted as the contribution to the rate of change of the
velocity field 4n(x) at a point x made by the nonlinear interactions involving modes from
the spectral regions &/ and V. Note that these interactions influence all modes k which can
form a triangle with two other modes such that one is in & and the other in V. NV(x)
represents a contribution to the rate of change of #,(x) which is made by ali modes from K
interacting nonlinearly with modes in &/ and V. Finally, the inverse Fourier transform of (5)

is

9 ¢
ottt

(x) = vVl (x) + Na(xlk:) + N2(x|ke), (10)
where the resolved nonlinear term N,(x|k.) and the subgrid-scale term N2(x|k.) in the
physical space are obtained Fourier transforming (6) and (7), respectively.

In the LES the most fundamental requirement is that the models employed properly ap-
proximate effects of subgrid-scale interactions on the energetics of the resolved scales. Thus,
in assessing the models, energy equations rather than momentum equations are usually con-

sidered. In the spectral space the equation foi the energy amplitude 3 |u(k)|? = jua(k)u;(k)

of mode k obtained from (2) is:

d1 1
Sl = ~2vkfu(l)f + T(K), (1)

where T'(k) is the nonlinear energy transfer

T(k) = Re[un(k)Na(k)]. (12)




For homogeneous turbulence the above equations are usually considered after sumniing

up contributions from all modes with a prescribed wavelength |k} = k, giving:

%E(k) = —2k*E(k) + T(k), (13)

where E(k) and T (k) are the classical energy and transfer spectra, respectively, for homoge-
neous turbulence.

Similarly, the detailed energy transfer to/from mode k caused by its interactions with
wave numbers p in a prescribed region P of the wave number space and q = k—p in another

region ¢ is

TPO(k) = Re[us(k)N.2(K)]. (14)

Truncating T?9(k) to another region K results in the quantity T*?9(k) which is inter-
preted as the energy transfer to the region K resulting from nonlinear interactions of scales
in K with scales in P and Q. For homogeneous turbulence the regions P and Q are usually
chosen as spherical wave number bands centered at wave numbers p and ¢, respectively. 1
this case quantity T?9(k) will be denoted by T(k|p,¢). Summing quantity T(k|p,q) over
spherica’' shells with thickness Ak = 1 centered at wave number k gives a function denoted

by either T*P9(k) or T(k|p,q)

T*P®(k) = T(klp,q) = 3 T(k|p,q)- (1
k-1ak<|kick+iak

Total nonlinear energy transfer T'(k) to the wave number band k is obtained by summir:¢




contributions T'(k|p, q) from all possible bards p and ¢:

=" 3" T(klp,q) = 3_ P(klp). (16)

P

Here, the function P(k|p) is a result of summation of T(k|p,q) over all g-bands and is
interpreted as the energy transfer between wave number bands & and p.
With this notation, the energy equation for the energy spectrum EZ(k) of resolved scales,

obtained from Eq. (5), is

0

-a—tE‘(k) = —2vk?E*(k) + T(klk.) + T*(k|k.), (17)
where
T(klk.) = T (k), (18)
and
T*(kik.) = T*SS(k) + T*5 (k). (19)

Equivalent expressions in the physical space are obtained by considering an equation for

the rate of change of the turbulent energy of the resolved scales e“(x) = 1a(x)a5(x)

de(x)

ot = u&f(x)V’&f(x) + T(xlkc) + T’(x,kc), (20)

where
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T(x|ke) = a5 (x)Na(x]ke), (21)

is the resolved energy transfer and

T*(x(k.) = g (x) N2 (x| ke) (22)

is the subgrid-scale energy transfer in the physiclal space representation.

4 Results

Using the methodology described in the previous section and employing the numerically
simulated velocity fields it is possible to compute directly the subgrid-scale energy transfer
for any prescribed cutoff wave number k. < k,. It is customary to represent spectral

subgrid-scale energy transfer in terms of the subgrid-scale eddy viscosity

T*(klk.)

Ve(kaC) = —m,

k< k., (23)

4

which, following Kraichnan *, is usually normalized by the factor equal to the product of

the velocity scale [E(k.)k.]'/? and the length scale 1/k. at the cutoff k.

_ ve(klk.) :
ve" (klk) = Ek)/E]T (24)

In order to compute the function T*(k|k.), which depends on the length of the wave

number k, according to Eq. (15) summation over all wavevectors k in a thin spherical shell

centered at k£ must be performed. The components of such a sum are in general of both
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signs implying that a particular mode k may be either losing energy (forward transfer) or
gaining energy (inverse transfer) because of the subgrid-scale nonlinear interactions. To
assess the relative importance of these two processes we have performed partial summations
over components of same sign, effectively splitting the subgrid-scale energy transfer to/from
scales k into the forward and the inverse transfer contributions. This procedure is equivalent
to decomposing the total eddy viscosity into two parts, a positive one associated with the
forward energy transfer, and a negative one associated with the inverse energy transfer. In
Fig. 3 we plot the total eddy viscosity and its positive and negative components computed
for three different cutoff wave numbers: one, k. = 20, at the end of the (nominal) inertial
subrange; the next, k. = 40, at the beginning of the dissipation range; and the last one,
k. = 80, deep in the dissipation range. For k. = 20 the total eddy viscosity is predominantly
positive, with the absolute values of the negative component about 30-50% of the values
of the positive component for k/k. < 0.6. For k/k. > 0.6 the ratio of the negative to the
positive component decreases to about 20%. For k. = 40 in the range k/k. < 0.6 the positive
and negative componenfs nearly balance each other with the resulting total eddy viscosity
close to zero. For k/k. > 0.6 both components exhibit cusp-like behavior with the cusp for
the positive component much stronger than for the negative one. Nevertheless, even close
to the cutoff the ratio of the negative to the positive component is about 15%. For the case
k. = 80 in the range k/k. < 0.6 the positive component is practically zero and the negative
one is slightly less than zero, resulting in small negative values of the total eddy viscosity.
Beyond that range, for k& approaching the cutoff, the positive component increases very

rapidly, reaching at the cutoff k. values by factor 20 greater than the values of the negative
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component. In the last figure we also plot the subgrid-scale eddy viscosity calculated by
Kraichnan ¢ and Cholet and Lesieur 9 from the analytical theories of turbulence under the
assumption of the infinite inertial range. This function is essehtially constant (equal to 0.267)
for k/k. < 0.6, and exhibits the cusp-like behavior for k/k. > 0.6. We conclude from this
analysis that the spectral inverse energy transfer may be quite significant, in some cases
comparable to the forward transfer for given scales k. However, in all cases the forward
transfer dominates as the cutoff wave number is approached. Since the transfer is obtained
by multiplying the eddy viscosity by k?, the cusp in the eddy viscosity for k/k. > 0.6 is
actually even more significant for the subgrid-scale transfer.

Using Eq. (22) we have computed the subgrid-scale energy transfer in the physical space
T’(xlkc) for several spectral cutoff wave numbers. In Fig. 4 we plot a cross-section of this
quantity for k. = 20 and k. = 40 for a plane in the impermeable box located at y = 7/4 .
The larger spectral cutoff wave number results in presence of smaller scales in the physical
space. Regions of the forward transfer (broken contours) and the inverse transfer (solid
contours) are clearly visible. Even though the overall subgrid-scale transfer integrated over
the computational box is negative, the forward and inverse transfer regions in. these plots
are roughly in balance. This indicates that both effects may be equally important in the
dynamics of the flow. This conclusion agrees with the corresponding conclusion reached in
the analysis of the spectral subgrid-scale transfer. It should be noted, however, that there is
no direct relation between sets of spectral modes characterized by positive/negative transfer
and the physical space regions with the same characteristics. Assuming that in the large

scale momentum equation (5) the subgrid-scale nonlinear term N,*(k|k.) is represented using
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the classical spectral eddy viscosity model ve(k|k.) of Kraichnan 4 and Cholet and Lesieur 2

Na?*(klke) = —ve(k|ko)k2ul(k), (25)

we have calculated the physical space subgrid-scale energy transfer for this model from (22).
The results of the calculations are plotted in Fig. 5 for k. = 20 and the same cross-plane as
in Fig. 4. The modeled transfer is predominantly of the forward type as expected from the
use of the strictly positive eddy viscosity but the appearance of weak inverse transfer regions
may seem surprising. However, it should be noted that the molecular viscosity term in the
incompressible Navier-Stokes equations results in two distinct effects in the energy equation:
the kinetic energy dissipation, which is negative everywhere, and the change in the kinetic
energy caused by work done by viscous stresses, which locally in space may be either positive
or negative. Therefore any model which approximates the subgrid-scale nonlinear term N’
by a viscous-like term in the Navier-Stokes equations may contain regions of the increasing
kinetic energy caused by work done by the modeled stresses. In practice, however, as seen in
Fig. 5, these positive regions are quite insignificant since they occupy much less space than
the negative regions and have also much lower maximum values. Obviously, such models
give poor representation of the actual subgrid-scale energy transfer as seen comparing the
actual and modeled transfers shown in Fig. 4(a) and Fig. 5, respectively. The conclusions
from the physical space analysis of the subgrid-scale energy transfer parallel those drawn
from the spectral space analysis: a relative importance of the inverse energy transfer process
and an inability of the classical subgrid-scale models to properly account for it.

Cusps observed in spectral eddy viscosities in the vicinity of the cutoff wave number
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suggest that the total energy transfer across this wave number is dominated by energy
exchanges among resolved and unresolved scales from the vicinity of the cutoff. Indeed,

it has been established in a number of papers 18,21,22,23

that in numerically simulated
turbulence at low Reynolds numbers the energy transfer beyond the energy containing range
is local, occuring between scales of similar size, even though the nonlocal wave number
triads with one scale in the energy containing range are responsible for this local transfer.
One would thus expect that the subgrid-scale nonlinear interactions between the resolved
scales (k < k.) and the unresolved scales characterized by wave numbers slightly greater
than the cutoff wave number k. will dominate the subgrid-scale energy transfer process. To
evaluate this hypoihesis in more detail we have calculated, for several values of the cutoff
wave number k., the subgrid-scale energy transfer for the truncated velocity fields obtained
from the original field by setting to zero all modes with wave numbers k > ck., where ¢ was
equal to 3/2 and 2. In this way the effect of all modes k¥ > ck. on the subgrid-scale energy
transfer is eliminated. In Fig. 6 we plot the resulting spectral subgrid-scale eddy viscosities
(24) for k. = 20 and k. = 40 and compare them with the eddy viscosities computed using
the full velocity field, i.e. with all modes k < k,, being non-zero. It is seen that the value
of the eddy viscosity computed for ¢ = 3/2 provides a very good approximation to the total
eddy viscosity while for ¢ = 2 both quantities are practically indistinguishable on the plots.
The similarly calculated subgrid-scale transfer in the physical space (22) is shown in Fig.
7 for the cutoff wave number k. = 20 and two values of the parameter ¢, 3/2 and 2. The
plane shown is the same as in Fig. 4. The spatial structure of the subgrid-scale energy

transfer in Fig. 7 and Fig. 4(a) is the same, with differences seen only in the values of the
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transfer at particular locations. For ¢ = 3/2 the peak values of the approximated transfer
(Fig. 7(a)) may depart by about 10% from the exact values (Fig. 4(a)) with the departures
decreasing to about 5% for ¢ = 2 (Fig. 7(b)). Therefore, both in the spectral and the
physical space representation the subgrid-scale energy transfer for the resolved modes k < k.
can be determined with high accuracy by considering their interactions with a limited range
of unresolved modes k. < k < 2k.. It may be instructive to note that that for k. = 20 and
k., = 170 the resolved ﬁlodes constitute about 0.0016 of all modes, and modes with k < 2k,
about 0.013 of all modes. Thus the dynawuics of the largest 0.16% modes is determined
almost entirely by their nonlinear interactions with about 1% of all modes, the remaining
99% modes not affecting visibly the largest scales. Moreover, the lack of direct influence of
small scales k > 2k, on the energetics of the large resolved scales k < k. implies that the

19

direct nonlocal energy transfer, inherent in the classical eddy viscosity theories *“, is not
present in our simulations. The dynamics of the largest modes observed in the simulations is
quite similar to the classical picture of the dynamics of the energy containing range in high
Reynolds number turbulence. Quoting Batchelor 24, "It seems that the energy-containing
eddies determine the rate of energy transfer by their mutual interactions, and the larger
wave-numbers adjust themselves, according to the Reynolds number, in order to convert
this energy into heat at the required rate.”

For the purpose of subgrid-scale modeling it is important to investigate relations between
observed subgrid-scale energy transfer and various features of the resolved velocity field

(4). In Figs. 8, 9, and 10 we plot in the physical space representation the kinetic energy

7u(x) - u(x), the enstrophy iw(x) - w(x), where w(x) is the vorticity, and the dissipation
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rate 3u(0u/dzx + Oui/0z:)?, respectively. All these quantities are computed using both
the full velocity field (all modes k¥ < k,, are nonzero) and the velocity field (4) truncated
at k. = 20. One cross-sectional plane at the location y = (3/4)r in the impermeable box
is plotted and for comparison we also plot in Fig. 11 the subgrid-scale energy transfer in
the same plane. Spatial structure of energy fields for the full and truncated fields is nearly
the same. This feature is expected since the modes k < k. contain most of the total energy.
The peak values of the energy for the full field may exceed by 30% the peak values for the
truncated field. The maximum values for the dissipation and the enstrophy fields computed
using the full velocity fields are by a factor 5 greater than for the truncated fields, indicating
fairly large contriburions coming from higher wave numbers £ > k.. The importance of
these wave numbers is also reflected in the spatial structure of these quantities, with the full
fields showing the presence of much smaller scales than the truncated fields. Despite these
differences between the full and the truncated fields, for the enstrophy the spatial structure
of the large scale component (Fig. 9(b)) is remarkably similar to the structure of the total
enstrophy (Fig. 9(a)). In particular the regions of la:rge values of the total enstrophy are
very well correlated with the regions where the truncated field also gives large values. This
result is somewhat surprising since the large scale enstrophy field is determined using only
0.16% of all modes. It suggests that these largest scales contain most of phase information
required to determine spatial structure of the enstrophy field, and the role of higher wave
number modes is to merely reflect the fact that the velocity gradients are steeper than can
be resolved by the low wave number modes. In other words, larger wave numbers in the

spectral space are needed to resolve steep velocity gradients rather than small eddies thought
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of as small, individual flow structures like localized vortices. The level of correlation between
the full and truncated fields for the dissipation is lower. The regions of the most intense
dissipation for the truncated field (located along diagonals, half way between the center and
the corners of the plotted plane in Fig. 10(b)) correlate well with the full dissipation field
in the same region (Fig. 10(a)) but some equally strong regions in the full field farther
away from the center do not have clear counterparts in the truncated field. Finally, all three
quantitites computed using the truncated velocity field were compared with the subgrid-
scale energy transfer plotted in Fig. 11. There is some level of spatial correlation between
the subgrid-scale transfer and the enstrophy and the dissipation fields, with the regions of
significant transfer in the vicinity (but not on the top of) regions of large enstrophy and
dissipation. Also, the regions of intense large scale dissipation are usually located on ihe
peripheries of the regions of intense large scale enstrophy. Interestingly, the regions of large
subgrid-scale transfer seem to correlate best with the regions of large scale energy (Fig. 9(b)).
Such correlations were observed previously 25 for different velocity fields but no convincing
physical explanation of this observation is known. The above observations are based on visual
inspection of countour plots and thus have a very qualitative character. A more quantitative
procedure would have to be used to evaluate correlations in a systematic way. Nevertheless,
this qualitative analysis clearly illustrates a fairly compiex character of inter-relations among
different physical quantities and gives no indications that any simple expression for the
subgrid-scale transfer in terms of the resolved energy, enstrophy, or dissipation exists. We
conclude from the analysis of the truncated fields that the the subgrid-scale energy transfer

is at best marginally correlated with the large scale energy, enstrophy, and dissipation. This
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analysis also reveals that the turbulent activity is spatially intermittent and its physical
locations are determined by the mutual interactions of the largest scales. The high wave
number modes in this flow cannot be interpreted as individual, small scale turbulent eddies,
but reflect the presence of steep gradients at the spatial locations determined by the large
scales.

The observed importance of the large scales, which constitute only a minute fraction
of all spectral modes, in the dynamics of turbulence is encouraging since it suggests that
their dynamics may be almost self-contained and thus the accurate subgrid-scale models
based on the large scale velocity information should be possible. The term ”almost self-
contained dynamics” is not very precise but can be illustrated by the following example. In
Fig. 12(a) we plot one plane from the resolved nonlinear transfer field (Eq. (21)) and in
Fig. 12(b) the corresponding result for the total nonlinear transfer, i.e. the sum of (21)
and (22). It is seeu that the spatial structure of the resolved nonlinear transfer is highly
correlated with the structure of the total nonlinear transfer. In that sense the dynamics of
the large resolved scales, which involves interactions with all modes in the system (the total
transfer) is "almost” the same as the internal nonlinear dynamics of the large scales onls
(the resolved transfer). The difference between both quantities is of course the subgrid-scale
nonlinear transfer (22), which when viewed this way, is a small correction to the resolvet
transfer needed to get the total transfer and to account for the non-conservative character
of the entire system. The large degree of correlation between the resolved and the totai
transfers suggests that in the subgrid-scale modeling a good strategy may be to model tl.«

total (unknown) transfer using the resolved (known) transfer rather than to model their




difference, the subgrid-scale transfer, as is always done.

5 Conclusions

We have performed a detailed analysis of the effects of the subgrid-scale nonlinear interactions
on the energetics of isotropic turbulence. The analyzed turbulent velocity field was obtained
from a direct numerical simulation of the Taylor-Green vortex flow. Symmetries of the flow
allowed to reach the spatial resolution in the simulation equivalent to 512% mesh points and
the Reynolds number Rj = 70. At this Reynolds number the flow exhibits a beginning of
the inertial range dynamics at the lowest wave numbers. However, even these low as well as
all higher wave numbers are still dominated by dissipative processes. Therefore, while our
conclusions are certainly valid for the disspation range dynamics it is less certain that they
are applicable to the inertial range dynamics.

An important feature of the computed subgrid-scale energy transfer, in both spectral
and physical space representation, is the presence of significant inverse energy transfers,
from the unresolved to the resolved scales. The inverse subgrid-scale transfer was predicted

and observed before in the context of spectral dynamics of homogeneous turbulence 46,118

and in the physical space for homogeneous and wall-bounded turbulent flows 7,25,9,26 The
observed significance of the inverse transfer in the energetics of the resolved scales implies
that successful subgrid-scale models should properly account for such effects. At the present
time these effects are rarely taken into account in the subgrid-scale modeling procedures.
If accounted for they are modeled by either adding a random force to the subgrid-scale

7,8

equations "’° or extrapolating from the dynamics of the resolved scales 9. Since most of the

23




subgrid-scale transfer observed in this work is caused by interactions among highly correlated
modes on both sides of the cutoff wave number, approximating effects of such interactions by
random forces is debatable. An approach used in the dynamic subgrid-scale model 9 seems
more appropriate but it suffers from modeling the inverse transfer by a diffusion type term
with a negative diffusion coefficient, mathematically an inherently unstable situation. It
appears that alternate ways of the subgrid-scale modeling which overcome these conceptual
and mathematical difficulties should be explored.

Our analysis also reveals that the nonlinar dynamics of the resolved modes with wave
numbers k < k. is governed almost exclusively by their interactions with a limited range
of modes with wave numbers not exceeding 2k. and nonlocal, eddy-viscosity type energy
transfer is not observed. Thus, in agreement with the classical picture of the turbulence

dynamics A

, the large scales o a turbulent flow determine the energy flux down the spectrum
and the small scales play entirely passive role by adjusting themselves in such a way as to
accomodate this energy flux prescribed by the large scales.

The physical space energy, enstrophy, and dissipation have been computed for the full and
truncated velocity fields and compared with the subgrid-scale energy transfer for the same
truncation wave number. Surprisingly, these physical quantities computed for both full and
truncated fields show many similar spatial features despite the fact that the truncated field
contains only 0.16% of all modes present in the system. This result reinforces our conclusion
about the dominant role played by the very largest scales in the dynamics of the flow. The

level of correlation between these quartities and the subgrid-scale transfer varies from weak

for the enstrophy and dissipation, to moderate for the energy.




Finally, using the observed importance of the nonlinear interactions among the largest
scales in the overall dynamics of the resolved scales it is ¢ 'ggested that the resolved nonlinear

term may possibly serve as a basis of a new approach to the subgrid-scale modeling.
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Figure Captions

Figure 1. Time evolution of flow quantities: (a) total kinetic energy; (b) total dissipation;
(c) skewness; (d) microscale Reynolds number.

Figure 2. Spectral quantities at the end ot the run (¢ = 18): (a) unnormalized spectra of
the energy (solid line) and the dissipation (broken line); (b) the dissipation spectrum (solid
line) and the transfer spectrum (broken line) outside the energy containing range. Both
quantities plotted using a log-linear scale to accentuate their exponential behavior.

Figure 3. The spectral subgrid-scale eddy viscosity (solid line) and its negative (broken
line) and positive (dotted line) components: (a) k. = 20; (b) k. = 40; (c) k. = 80.

Figure 4. The subgrid-scale energy transfer in the physical space representation: (a)
k. = 20; (b) k. = 40. Plane y = 7/4 in the impermeable box is shown. Here and in
all subsequent contour plots the solid lines represent positive values and the broken lines
represent negative values.

Figure 5. The subgrid-scale energy transfer in the physical space computed using the
spectral eddy viscosity model of Kraichnan 4 and Chollet and Lesieur °.

Figure 6. The spectral subgrid-scale eddy viscosity: (a) k. = 20; (b) k. = 40. The
velocity fields used to compute this quantity were the full field (solid line), the full field
truncated at (3/2)k. (broken line), and the full field truncated at 2k. (dotted line).

Figure 7. The physical space subgrid-scale energy transfer computed for k. = 20 and the
full fields truncated at (a) (3/2)k. and (b) 2k..

Figure 8. The kinetic energy field in a plane y = (3/4)7 in the impermeable box: (a)

computed using the full velocity field; (b) computed using the resolved velocity field with
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the truncation wave number k. = 20.

Figure 9. The enstrophy field in a plane y = (3/4)r in the impermeable box: (a)
computed using the full velocity field; (b) computed using the resolved velocity field with
the truncation wave number k. = 20.

Figure 10. The dissipation field in a plane y = (3/4)r in the impermeable box: (a)
computed using the full velocity field; (b) computed using the resolved velocity field with
the truncation wave number k. = 20.

Figure 11. The subgrid-scale energy transfer in the physical space representation com-
puted for the cutoff wavenumber k. = 20 and shown in a plane y = (3/4)x in the impermeable
box.

Figure 12. The nonlinear energy transfer to/from the resolved modes k < 20 represented
in the physical space: (a) caused by interactions with the resolved modes only; (b) caused

by interactions with the resolved and unresolved modes.
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Abstract

Using results of direct numerical simulations of isotropic turbulence the subgrid-scale energy
transfer in the physical space is calculated exactly employing a spectral decomposition of the
velocity field into large and small scales. Both the forward and the inverse subgrid-scale
transfer components are found to be significant. The spatial structure of the exact subgrid-
scale transfer is qualitatively compared with the spatial structure of a number of physical
quantities which are considered to govern the dynamics of the large scales of turbulence. We
find that all quantities determined by the first derivatives of the velocity field correlate poorly
with the transfer which is largest at the peripheries of regions characterized by large values
of these quantities. The spatial structure of the transfer correlates much better with the
large scale energy and the Smagorinsky’s subgrid-scale energy transfer which is determined
by the second derivatives of the velocity field. None of the considered quantities is capable of

predicting sign of the subgrid-scale transfer.




1 Introduction

It is generally recognized that in the forseeable future numerical predictions of turbulent flows at
high Reynolds numbers will have to rely on models accounting for the effects of nonlinear interactions
between resolved (large) and unresolved (small) scales of motion. Commonly used models, either
for Reynolds averaged Navier-Stokes (RANS) equations or for large eddy simulations (LES), are
known to be deficient in many respects and the improvements in the models will be difficult to
achieve in the absence of underlying, generally accepted theory of turbulence. This gives impetus
to fundamental investigations of nonlinear interactions in turbulent flows which may eventually

1,2,3

provide better models. In such investigations the nonlinear interactions between prescribed
scales of motion are analyzed using accurately resolved velocity fields obtained in direct numerical
simulations. In the context of large eddy simulations a class of subgrid-scale nonlinear interactions
is of prime importance. Clark et al. 4 pioneered use of exactly computed subgrid-scale interactions
to assess phenomenological subgrid-scale eddy viscosity models in the physical space representation.
Later, Domaradzki et al. 5 applied similar methodology to compare the exactly computed spectral
subgrid-scale eddy viscosity with eddy viscosities predicted by the analytical theories of turbulence.
More recently Domaradzki et al. 6 used the same approach in investigating the inverse subgrid-scale
energy transfer in both spectral and physical space representation and the degree of localness of the
subgrid-scale transfer.

Apart from the usefulness of this approach in assessing existing subgrid-scale models we be-

lieve that it may also be very useful in investigation of coherent structures. Indeed, despite years

of research devoted to coherent structures in turbulent flows controversies persist as to their dy-




namical significance in evolution of turbulence with the vesulting lack of progress in deseioping
turbulence models that would explicitly include information about coherent structures. Since the
nonlinear energy transfer is a principal physical process influencing the evolution of turbulent fields
the dynamical significance of the coherent structures may be established if it is shown that they are
associated with significant transfer. More generally, one may argue that the existence of a noticable
correlation between a given physical quantity and the transfer implies the dynamical significance of
this quantity. Along these lines Domaradzki et al. 6 investigated qualitative correlations between
subgrid-scale energy transfer and the energy, vorticity, and dissipation fields for the symmetric
Taylor-Green vortex flow.

In this paper the same approach is used to investigate the subgrid-scale energy transfer in regular,
non-symmetric flows, and its spatial correlations with several physical quantities which customarily

are considered as being dynamically important i1 turbulent flows.

2 Numerical simulations

Description of field A - 128°.

Description of field B - 2563,

3 Basic quantities

Details of calculations of the subgrid-scale interactions from the results of direct numerical simula-
tions of isotropic turbulence are described by Domaradzki et al. 6. Here we quote only the main
formulas. For homogeneous turbulence incompressible Navier-Stokes equations in spectral (Fourier)

representation are:




g—tun(k) = —vk?u, (k) + N.(k). (1)

Here, u,(k) is the velocity field in spectral space, with the explicit dependence on time omitted, v

is the kinematic viscosity, and N, (k) is the nonlinear term

Nafk) = 5 Prin(k) [ pur(®)um(k — p) ©)

where tensor Py, (k) accounts for the pressure and incompressibility effects. The summation con-
vention is assumed throughout.

The wave number space is divided into two non-overlapping regions, £ (|k| < k.) signifying
large, resolved scales, and S (|k| > k.) signifying small, unresolved scales. An evolution equation

for the resolved scales i.e. the velocity field u,(k) truncated to the region £

un(k) if kel

0 otherwise

0
Eunﬁ(k) = —vk?u 5 (k) + Na(klk.) + N (k|ko), (4)
where N,(k|k.) is the resolved nonlinear term and N,*(kl|k.) is the subgrid-scale nonlinear term.
These terms are computed as follows. First, Eq. (2) is used with the full (untruncated) velocity

fields u;(p) and um(k — p) and the result is truncated to the region £ to obtain the total nonlinear

term




IVntOt(k‘kc) - ZVn(klkc) + ;\'ns(kllx‘c) (:

1}
~—

Next, Eq. (2) is used again with the truncated velocity fields uf(p) and u% (k — p) and the result is
truncated to the region £ giving the resolved nonlinear term N,(k|k.). The subgrid-scale nonlinear
term is obtained as the difference between the total nonlinear term (5) and the resolved nonlinear
term.

The above described procedure has its exact counterpart in the physical space representation.
Inverse Fourier transform, signified by tilde, of N,(k) (Eq. (2)) is the sum of the convective and

pressure terms in the Navier-Stokes equation in the physical space coordinates

- _dan(x)  3p(x)

() = s T - 2] (6)

Similarly, the inverse Fourier transform of (4) is
4 ~ L 2~C \) Y& -
37 Ua(X) = vV (x) + Na(x|ke) + N3(x|ke), (7)

o
where the resolved nonlinear term N,(x|k.) and the subgrid-scale term N2(x|k.) in the physical
space are obtained Fourier transforming corresponding expressions in the spectral space. An equa-

tion for the rate of change of the turbulent energy of the resolved scales

is obtained from (7) as




where

T (x[ke) = dz (%) Vn(xlke), (10)

is the resolved energy transfer and

T*(x|ke) = a&(x)N3(x|k.) (11)

is the subgrid-scale energy transfer in the physical space representation.

The goal of the subgrid-scale modeling is to obtain as good as possible an approximation to the
subgrid-scale nonlinear term N:(x|k.) using only information available in the resolved scales. Thus
on the level of the energy equation we are interested in relations between observed subgrid-scale
energy transfer (11) and various physical quantities computed for the resolved velocity field (3). In
addition to the large scale energy (8) the following large scale quantities have also been considered:
enstrophy, dissipation, vorticity production, enstrophy production, pressure, the second invariant,
and Smagorinsky’s subgrid-scale energy transfer. These quantities are defined as follows. The

enstrophy 1s

O(x) = 53%(x)(x) 12)

where (); is the large scale vorticity. Introducing the large scale rate-of-strain tensor




Sij = %(auf/axj + auf/(?r,-) (13)

and the large scale rotation tensor

1
R,'_,' = §(auf/6$] - Buf/am.-), (14)
we define dissipation
1 -
D(x) = 5v5:;(x)Si(x), (15)

the square of the vorticity production (i.e. the square of the vortex stretching term in the vorticity

equation)

P(x) = Qu(x)S5(x)55x(x)%(x) , (16)

enstrophy production

V(x) = Qi(x)Si;(x)Q2;(x) , (17)

the second invariant of the large scale velocity gradient tensor

R(x) = 5 [RyR; — S554), (18)

and the quantity proportional to the subgrid-scale energy transfer predicted by the Smagorinsky’s

model 12




0
S(x) = uf (x)5~ [(8555)'/25,] . (19)

4 Results

Structures in isotropic turbulence are often identified as regions of concentrated vorticity. Visual-

7,8,9,10

izations of numerically simulated isotropic turbulence show existence of vortex tubes and
vortex sheets in such flows with vortex tubes being predominant. In Fig. 1 we plot isocontours
of enstrophy for the field A [vorticity level is ?]. The vorticity indeed forms elongated, tube-like
structures, in accordance with other simulations of isotropic turbulence. In Figs. 2(a) and 2(b)
we plot cross-sections through this enstrophy field taken in horizontal planes at distances from the
lower plane equal to a quarter and a half of the periodicity length, respectively. In Fig. 2(a) two
regions of intense vorticity are clearly visible. The elongated region in the lower left corner results
from the cut of the vortex tube along its horizontally oriented axis and the more circular region to
the right results from the cut of the vortex tube with its axis inclined with respect to the horizon-
tal plane. In Fig. 2(b) several regions with large vorticity values have generally oval shapes and,
after comparison with Fig. 1 is made, appear to result from cutting vertex tubes with axes in the
directions not far from normal to the cutting plane.

In Figs. 3(a) and 3(b) we plot subgrid-scale energy transfer (11) in horizontal planes at the same
locations as used in plotting the enstrophy. An important observation is that the calculated subgrid-
scale transfer contains regions of large forward transfer (broken line contours) and regions of inverse

transfer of comparable magnitude (solid line contours). This observation is consistent with results

of Piomelli et al. 11 for turbulent channel flow and results of Domaradzki et al. 6 for the turbulent




Taylor-Green vortex flow. The presence of significant inverse transfer is in direct contradiction 1o
the implicit assumptions made in turbulence models that the subgrid-scale interactions are of purely
dissipative character i.e. transferring energy always in one direction, from the large to the small
scales.

In this work we are mainly interested in how regions of the large transfer are located with respect
to regions characterized by by large values of the other physical quantities. In order to investigate
such spatial correlations between the computed subgrid-scale energy transfer and the dynamics
of large scales we plot transfer superimposed on contour plots of the previously defined functions
of the large scale velocity field. No attempt was made to make point-wise comparison between
the exact values for the plotted quantities nor the point-wise correlation coefficient was computed.
Our analysis is qualitative but in view of the complexity of the analyzed fields is necessary to
establish guidelines for more quantitative analysis which should be attempted later. For instance,
the presence of both positive and negative values for the computed transfer may imply negligible
correlation coefficient between the transfer and a purely positive quantity, even though both may
have a very similar spatial structure. The correlation coefficient will also be small if one quantity
is concentrated in the vicinity of the other but not on top of it. Yet such relation may imply
that both quantities are dynamically correlated even though the pointwise correlation coefficient is
small. Therefore it appears that the qualitative analysis reported here is a reasonable first step in
establishing approximate correlations between various fields and in suggesting directions for a more
quantitative analysis.

In Fig. 4 large values of enstrophy (12) are usually accompanied by large positive/negative

values of the subgrid-scale transfer but there is only partial overlap between these quantities. It
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appears that maxima of both fields are shifted with respect 1o cach other <uch that revions ot Lo ae
transfer are located on the edges of high enstrophy regions. Even though transfer seems to be
associated with enstrophy the reverse is not necessarily true i.e. the regions of high transfer may
be present without any significant enstrophy in their vicinity.

Higher degree of correlation is observed in Fig. 5 between the subgrid-scale transfer and the large
scale energy (8). In this case the regions of the most intense subgrid-scale transfer lie almost directly
on top of high energy regions. This is particularly clearly illustrated in Fig. 5(b) where a sequence
of the subgrid-scale regions of alternating signs forms a pattern overlapping with the pattern formed
by the large scale energy. The observed correlation is puzzling since it is expected that the energy
transfer process is associated with gradients of the velocity field, not with the velocity field itself.
This correlation may be explained if a significant fraction of the observed subgrid transfer in the
physical space is a result of an advection of the small scales by the large ones. Even though such
a process does not contribute to the change in the energy of the large scales integrated over entire
domain, it affects their energy locally in the physical space .a,nd constitutes a legitimate part of the
transfer in the physical space according to the definition (11). Obviously, such a process will be
most pronounced at the locations where the advective velocity is large and these locations coincide
with the regions of high large scale energy.

In Fig. 6 the subgrid-scale transfer is overlayed on the large scale dissipation field (15). As in
the case of correlations with the enstrophy, the regions of the large transfer are generally found
on peripheries of the regions with large dissipation. This is perhaps not surprising since both the
enstrophy and the dissipation are determined by the strength of the velocity gradients. However,

it should also be noted that the regions of the large enstrophy and the large dissipation are not in

11




the same locations, with the dissipation largest in the regions of small cnstrophy valios. and vice
Versa.

The vorticity and the enstrophy production terms, (16) and (17), respectively, we.e found to be
fairly well correlated with the enstrophy field. This in turn implies tiiat .ne subgrid-scale transfer
will be largest at the peripheries of the regions with large values of these quantities, similarly to
the case of the enstrophy. Plots of the transfer superiniposed on the contour plots of the vorticity
and the enstrophy production terms are shown in Figs. 7 and 8, respectively, and confirm this
supposition. Finally, in Fig. 9 the comparison is made between ‘he subgiid-scale transfer and
the second invariant for a higher resolutions ficid, run B. Again, we find that the correlations
between both fields is such that the most intense transfer is located around the edges of regions
with significant values of the second invariant.

With the exception of the energy, all the above quantities are various combinations of the first
order velocity derivatives. All these combinations correlate poorly with the computed subgrid-
scale energy transfer in a sense that large values of these quantities are found in different spatial
locations than large positive/negative values of the transfer. However, the transf.r is usually most
intense in the regions located on peripheries of the regions characterized by large values of these
quantities. It may be expected that at these locations gradients of the above analyzed quantities
will be large. It suggests that correlations between the subgrid-scale energy transfer and quantities
involving second order derivatives of the velocity field may be better than {.t quantities based on
the first derivatives. One possible quantity of this kind, which is of interest in the context of this
work, is the classical expression of Smagorinsky 12 for the subgrid-scale enersv transfer. In Fig. 10

we plot this quantity superimposed on the exact subgrid-scale energy tran. er. The Smagorinsky’s

,‘
(]




model captures locations of the most intense transfer much better than the other tnvestigated
quantities, with the exception of the energy. The obvious drawback of this model is that it has a
purely dissipative character predicting the energy transfer always from the large to the small scales
whereas the exact transfer contains regions of the forward as well as inverse transfer, both being

significant.

5 Conclusions
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Figure Captions

Figure 1. Isosurface plot of the total enstrophy for the velocity field A.

Figure 2. Cut through the enstrophy field in a horizontal plane: (a) located at = = L/4; (b)
located at = = L/2, where L is the periodicity length.

Figure 3. The subgrid-scale energy transfer in a horizontal plane: (a) located at z = L/4; (b)
located at z = L/2, where L is the periodicity length.

Figure 4. The subgrid-scale energy transfer superimposed on the large scale enstrophy in a
horizontal plane z = L/4.

Figure 5. The subgrid-scale energy transfer superimposed on the large scale energy in a hori-
zontal plane: (a) z = L/4; (b) z = L/2.

Figure 6. The subgrid-scale energy transfer superimposed on the large scale dissipation in a
horizontal plane z = L/4.

Figure 7. The subgrid-scale energy transfer superimposed on the large scale vorticity production
in a horizontal plane z = L/4.

Figure 8. The subgrid-scale energy transfer superimposed on the large scale enstrophy produc-
tion in a horizontal plane z = L/4.

Figure 9. The subgrid-scale energy transfer superimposed on the second invariant of the large
scale velocity gradient tensor (the velocity field B).

Figure 10. The exact subgrid-scale energy transfer superimposed on the transfer obtained from

the Smagorinsky’s eddy-viscosity model in a horizontal plane z = L/4.
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